Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngchomfeqhom Structured version   Visualization version   GIF version

Theorem rngchomfeqhom 42816
Description: The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rngcbas.c 𝐶 = (RngCat‘𝑈)
rngcbas.b 𝐵 = (Base‘𝐶)
rngcbas.u (𝜑𝑈𝑉)
Assertion
Ref Expression
rngchomfeqhom (𝜑 → (Homf𝐶) = (Hom ‘𝐶))

Proof of Theorem rngchomfeqhom
StepHypRef Expression
1 rngcbas.c . . . 4 𝐶 = (RngCat‘𝑈)
2 rngcbas.b . . . 4 𝐵 = (Base‘𝐶)
3 rngcbas.u . . . 4 (𝜑𝑈𝑉)
41, 2, 3rngcbas 42812 . . 3 (𝜑𝐵 = (𝑈 ∩ Rng))
5 eqid 2825 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
61, 2, 3, 5rngchomfval 42813 . . 3 (𝜑 → (Hom ‘𝐶) = ( RngHomo ↾ (𝐵 × 𝐵)))
74, 6rnghmresfn 42810 . 2 (𝜑 → (Hom ‘𝐶) Fn (𝐵 × 𝐵))
8 eqid 2825 . . 3 (Homf𝐶) = (Homf𝐶)
98, 2, 5fnhomeqhomf 16703 . 2 ((Hom ‘𝐶) Fn (𝐵 × 𝐵) → (Homf𝐶) = (Hom ‘𝐶))
107, 9syl 17 1 (𝜑 → (Homf𝐶) = (Hom ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166   × cxp 5340   Fn wfn 6118  cfv 6123  Basecbs 16222  Hom chom 16316  Homf chomf 16679  RngCatcrngc 42804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-hom 16329  df-cco 16330  df-homf 16683  df-resc 16823  df-estrc 17115  df-rnghomo 42734  df-rngc 42806
This theorem is referenced by:  rhmsubcrngc  42876  rhmsubc  42937
  Copyright terms: Public domain W3C validator