Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfval Structured version   Visualization version   GIF version

Theorem homfval 16962
 Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
homfval.x (𝜑𝑋𝐵)
homfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfval (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))

Proof of Theorem homfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homffval.f . . . 4 𝐹 = (Homf𝐶)
2 homffval.b . . . 4 𝐵 = (Base‘𝐶)
3 homffval.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 16960 . . 3 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
54a1i 11 . 2 (𝜑𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
6 oveq12 7158 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
76adantl 485 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
8 homfval.x . 2 (𝜑𝑋𝐵)
9 homfval.y . 2 (𝜑𝑌𝐵)
10 ovexd 7184 . 2 (𝜑 → (𝑋𝐻𝑌) ∈ V)
115, 7, 8, 9, 10ovmpod 7295 1 (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3480  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151  Basecbs 16483  Hom chom 16576  Homf chomf 16937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-homf 16941 This theorem is referenced by:  homfeqval  16967  comfffval2  16971  comffval2  16972  comfval2  16973  catsubcat  17109  subcss2  17113  fullsubc  17120  fullresc  17121  funcres2c  17171  hof1  17504  hofcllem  17508  hofcl  17509  yonffthlem  17532  srhmsubc  44631  srhmsubcALTV  44649
 Copyright terms: Public domain W3C validator