| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfval | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| homfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| homfval | ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffval.f | . . . 4 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 2 | homffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | homffval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | homffval 17614 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) |
| 6 | oveq12 7362 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
| 8 | homfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | homfval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | ovexd 7388 | . 2 ⊢ (𝜑 → (𝑋𝐻𝑌) ∈ V) | |
| 11 | 5, 7, 8, 9, 10 | ovmpod 7505 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 Hom chom 17190 Homf chomf 17590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-homf 17594 |
| This theorem is referenced by: homfeqval 17621 comfffval2 17625 comffval2 17626 comfval2 17627 catsubcat 17764 subcss2 17768 fullsubc 17775 fullresc 17776 funcres2c 17828 hof1 18178 hofcllem 18182 hofcl 18183 yonffthlem 18206 srhmsubc 20583 srhmsubcALTV 48310 oppcendc 49004 discsubc 49050 ssccatid 49058 imaidfu 49096 imasubc 49137 imassc 49139 setc1onsubc 49588 |
| Copyright terms: Public domain | W3C validator |