MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfval Structured version   Visualization version   GIF version

Theorem homfval 17735
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
homfval.x (𝜑𝑋𝐵)
homfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfval (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))

Proof of Theorem homfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homffval.f . . . 4 𝐹 = (Homf𝐶)
2 homffval.b . . . 4 𝐵 = (Base‘𝐶)
3 homffval.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 17733 . . 3 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
54a1i 11 . 2 (𝜑𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
6 oveq12 7440 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
76adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
8 homfval.x . 2 (𝜑𝑋𝐵)
9 homfval.y . 2 (𝜑𝑌𝐵)
10 ovexd 7466 . 2 (𝜑 → (𝑋𝐻𝑌) ∈ V)
115, 7, 8, 9, 10ovmpod 7585 1 (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  Hom chom 17308  Homf chomf 17709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-homf 17713
This theorem is referenced by:  homfeqval  17740  comfffval2  17744  comffval2  17745  comfval2  17746  catsubcat  17884  subcss2  17888  fullsubc  17895  fullresc  17896  funcres2c  17948  hof1  18299  hofcllem  18303  hofcl  18304  yonffthlem  18327  srhmsubc  20680  srhmsubcALTV  48241  oppcendc  48906
  Copyright terms: Public domain W3C validator