MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfval Structured version   Visualization version   GIF version

Theorem homfval 17737
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
homfval.x (𝜑𝑋𝐵)
homfval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfval (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))

Proof of Theorem homfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homffval.f . . . 4 𝐹 = (Homf𝐶)
2 homffval.b . . . 4 𝐵 = (Base‘𝐶)
3 homffval.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3homffval 17735 . . 3 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
54a1i 11 . 2 (𝜑𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
6 oveq12 7440 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
76adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
8 homfval.x . 2 (𝜑𝑋𝐵)
9 homfval.y . 2 (𝜑𝑌𝐵)
10 ovexd 7466 . 2 (𝜑 → (𝑋𝐻𝑌) ∈ V)
115, 7, 8, 9, 10ovmpod 7585 1 (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  Hom chom 17309  Homf chomf 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-homf 17715
This theorem is referenced by:  homfeqval  17742  comfffval2  17746  comffval2  17747  comfval2  17748  catsubcat  17890  subcss2  17894  fullsubc  17901  fullresc  17902  funcres2c  17955  hof1  18311  hofcllem  18315  hofcl  18316  yonffthlem  18339  srhmsubc  20697  srhmsubcALTV  48169
  Copyright terms: Public domain W3C validator