MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup3 Structured version   Visualization version   GIF version

Theorem frlmup3 20370
Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥𝑓 · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
frlmup.k 𝐾 = (LSpan‘𝑇)
Assertion
Ref Expression
frlmup3 (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝑥,𝐾   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmup.b . . . 4 𝐵 = (Base‘𝐹)
3 frlmup.c . . . 4 𝐶 = (Base‘𝑇)
4 frlmup.v . . . 4 · = ( ·𝑠𝑇)
5 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥𝑓 · 𝐴)))
6 frlmup.t . . . 4 (𝜑𝑇 ∈ LMod)
7 frlmup.i . . . 4 (𝜑𝐼𝑋)
8 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
9 frlmup.a . . . 4 (𝜑𝐴:𝐼𝐶)
101, 2, 3, 4, 5, 6, 7, 8, 9frlmup1 20368 . . 3 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
11 eqid 2817 . . . . . . . 8 (Scalar‘𝑇) = (Scalar‘𝑇)
1211lmodring 19095 . . . . . . 7 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
136, 12syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑇) ∈ Ring)
148, 13eqeltrd 2896 . . . . 5 (𝜑𝑅 ∈ Ring)
15 eqid 2817 . . . . . 6 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
1615, 1, 2uvcff 20361 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → (𝑅 unitVec 𝐼):𝐼𝐵)
1714, 7, 16syl2anc 575 . . . 4 (𝜑 → (𝑅 unitVec 𝐼):𝐼𝐵)
1817frnd 6273 . . 3 (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵)
19 eqid 2817 . . . 4 (LSpan‘𝐹) = (LSpan‘𝐹)
20 frlmup.k . . . 4 𝐾 = (LSpan‘𝑇)
212, 19, 20lmhmlsp 19276 . . 3 ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
2210, 18, 21syl2anc 575 . 2 (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
232, 3lmhmf 19261 . . . . . 6 (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵𝐶)
2410, 23syl 17 . . . . 5 (𝜑𝐸:𝐵𝐶)
2524ffnd 6267 . . . 4 (𝜑𝐸 Fn 𝐵)
26 fnima 6231 . . . 4 (𝐸 Fn 𝐵 → (𝐸𝐵) = ran 𝐸)
2725, 26syl 17 . . 3 (𝜑 → (𝐸𝐵) = ran 𝐸)
28 eqid 2817 . . . . . . . 8 (LBasis‘𝐹) = (LBasis‘𝐹)
291, 15, 28frlmlbs 20367 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
3014, 7, 29syl2anc 575 . . . . . 6 (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
312, 28, 19lbssp 19306 . . . . . 6 (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵)
3230, 31syl 17 . . . . 5 (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵)
3332eqcomd 2823 . . . 4 (𝜑𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))
3433imaeq2d 5690 . . 3 (𝜑 → (𝐸𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))))
3527, 34eqtr3d 2853 . 2 (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))))
36 imaco 5868 . . . 4 ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼))
379ffnd 6267 . . . . . . 7 (𝜑𝐴 Fn 𝐼)
3817ffnd 6267 . . . . . . . 8 (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼)
39 fnco 6220 . . . . . . . 8 ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼)
4025, 38, 18, 39syl3anc 1483 . . . . . . 7 (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼)
41 fvco2 6504 . . . . . . . . 9 (((𝑅 unitVec 𝐼) Fn 𝐼𝑢𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)))
4238, 41sylan 571 . . . . . . . 8 ((𝜑𝑢𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)))
436adantr 468 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑇 ∈ LMod)
447adantr 468 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝐼𝑋)
458adantr 468 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑅 = (Scalar‘𝑇))
469adantr 468 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝐴:𝐼𝐶)
47 simpr 473 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑢𝐼)
481, 2, 3, 4, 5, 43, 44, 45, 46, 47, 15frlmup2 20369 . . . . . . . 8 ((𝜑𝑢𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴𝑢))
4942, 48eqtr2d 2852 . . . . . . 7 ((𝜑𝑢𝐼) → (𝐴𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢))
5037, 40, 49eqfnfvd 6546 . . . . . 6 (𝜑𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼)))
5150imaeq1d 5689 . . . . 5 (𝜑 → (𝐴𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼))
52 fnima 6231 . . . . . 6 (𝐴 Fn 𝐼 → (𝐴𝐼) = ran 𝐴)
5337, 52syl 17 . . . . 5 (𝜑 → (𝐴𝐼) = ran 𝐴)
5451, 53eqtr3d 2853 . . . 4 (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴)
55 fnima 6231 . . . . . 6 ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼))
5638, 55syl 17 . . . . 5 (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼))
5756imaeq2d 5690 . . . 4 (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼)))
5836, 54, 573eqtr3a 2875 . . 3 (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼)))
5958fveq2d 6422 . 2 (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
6022, 35, 593eqtr4d 2861 1 (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wss 3780  cmpt 4934  ran crn 5325  cima 5327  ccom 5328   Fn wfn 6106  wf 6107  cfv 6111  (class class class)co 6884  𝑓 cof 7135  Basecbs 16088  Scalarcsca 16176   ·𝑠 cvsca 16177   Σg cgsu 16326  Ringcrg 18769  LModclmod 19087  LSpanclspn 19198   LMHom clmhm 19246  LBasisclbs 19301   freeLMod cfrlm 20321   unitVec cuvc 20352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-inf2 8795  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-isom 6120  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-of 7137  df-om 7306  df-1st 7408  df-2nd 7409  df-supp 7540  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-oadd 7810  df-er 7989  df-map 8104  df-ixp 8156  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-fsupp 8525  df-sup 8597  df-oi 8664  df-card 9058  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-nn 11316  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11580  df-z 11664  df-dec 11780  df-uz 11925  df-fz 12570  df-fzo 12710  df-seq 13045  df-hash 13358  df-struct 16090  df-ndx 16091  df-slot 16092  df-base 16094  df-sets 16095  df-ress 16096  df-plusg 16186  df-mulr 16187  df-sca 16189  df-vsca 16190  df-ip 16191  df-tset 16192  df-ple 16193  df-ds 16195  df-hom 16197  df-cco 16198  df-0g 16327  df-gsum 16328  df-prds 16333  df-pws 16335  df-mre 16471  df-mrc 16472  df-acs 16474  df-mgm 17467  df-sgrp 17509  df-mnd 17520  df-mhm 17560  df-submnd 17561  df-grp 17650  df-minusg 17651  df-sbg 17652  df-mulg 17766  df-subg 17813  df-ghm 17880  df-cntz 17971  df-cmn 18416  df-abl 18417  df-mgp 18712  df-ur 18724  df-ring 18771  df-subrg 19002  df-lmod 19089  df-lss 19157  df-lsp 19199  df-lmhm 19249  df-lbs 19302  df-sra 19401  df-rgmod 19402  df-nzr 19487  df-dsmm 20307  df-frlm 20322  df-uvc 20353
This theorem is referenced by:  ellspd  20372  indlcim  20410  lnrfg  38208
  Copyright terms: Public domain W3C validator