Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmup3 | Structured version Visualization version GIF version |
Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
Ref | Expression |
---|---|
frlmup.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmup.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmup.c | ⊢ 𝐶 = (Base‘𝑇) |
frlmup.v | ⊢ · = ( ·𝑠 ‘𝑇) |
frlmup.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
frlmup.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
frlmup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
frlmup.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
frlmup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
frlmup.k | ⊢ 𝐾 = (LSpan‘𝑇) |
Ref | Expression |
---|---|
frlmup3 | ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmup.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmup.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
4 | frlmup.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑇) | |
5 | frlmup.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
6 | frlmup.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
7 | frlmup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
8 | frlmup.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
9 | frlmup.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | frlmup1 21005 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
11 | eqid 2738 | . . . . . . . 8 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
12 | 11 | lmodring 20131 | . . . . . . 7 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
13 | 6, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
14 | 8, 13 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | eqid 2738 | . . . . . 6 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
16 | 15, 1, 2 | uvcff 20998 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
17 | 14, 7, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
18 | 17 | frnd 6608 | . . 3 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵) |
19 | eqid 2738 | . . . 4 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
20 | frlmup.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑇) | |
21 | 2, 19, 20 | lmhmlsp 20311 | . . 3 ⊢ ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
22 | 10, 18, 21 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
23 | 2, 3 | lmhmf 20296 | . . . . . 6 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵⟶𝐶) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
25 | 24 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐸 Fn 𝐵) |
26 | fnima 6563 | . . . 4 ⊢ (𝐸 Fn 𝐵 → (𝐸 “ 𝐵) = ran 𝐸) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = ran 𝐸) |
28 | eqid 2738 | . . . . . . . 8 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
29 | 1, 15, 28 | frlmlbs 21004 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
30 | 14, 7, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
31 | 2, 28, 19 | lbssp 20341 | . . . . . 6 ⊢ (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
33 | 32 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) |
34 | 33 | imaeq2d 5969 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
35 | 27, 34 | eqtr3d 2780 | . 2 ⊢ (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
36 | imaco 6155 | . . . 4 ⊢ ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) | |
37 | 9 | ffnd 6601 | . . . . . . 7 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
38 | 17 | ffnd 6601 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼) |
39 | fnco 6549 | . . . . . . . 8 ⊢ ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) | |
40 | 25, 38, 18, 39 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) |
41 | fvco2 6865 | . . . . . . . . 9 ⊢ (((𝑅 unitVec 𝐼) Fn 𝐼 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) | |
42 | 38, 41 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) |
43 | 6 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑇 ∈ LMod) |
44 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
45 | 8 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑅 = (Scalar‘𝑇)) |
46 | 9 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐴:𝐼⟶𝐶) |
47 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑢 ∈ 𝐼) | |
48 | 1, 2, 3, 4, 5, 43, 44, 45, 46, 47, 15 | frlmup2 21006 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴‘𝑢)) |
49 | 42, 48 | eqtr2d 2779 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐴‘𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢)) |
50 | 37, 40, 49 | eqfnfvd 6912 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼))) |
51 | 50 | imaeq1d 5968 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼)) |
52 | fnima 6563 | . . . . . 6 ⊢ (𝐴 Fn 𝐼 → (𝐴 “ 𝐼) = ran 𝐴) | |
53 | 37, 52 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ran 𝐴) |
54 | 51, 53 | eqtr3d 2780 | . . . 4 ⊢ (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴) |
55 | fnima 6563 | . . . . . 6 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) | |
56 | 38, 55 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) |
57 | 56 | imaeq2d 5969 | . . . 4 ⊢ (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
58 | 36, 54, 57 | 3eqtr3a 2802 | . . 3 ⊢ (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
59 | 58 | fveq2d 6778 | . 2 ⊢ (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
60 | 22, 35, 59 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ↦ cmpt 5157 ran crn 5590 “ cima 5592 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 Σg cgsu 17151 Ringcrg 19783 LModclmod 20123 LSpanclspn 20233 LMHom clmhm 20281 LBasisclbs 20336 freeLMod cfrlm 20953 unitVec cuvc 20989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lmhm 20284 df-lbs 20337 df-sra 20434 df-rgmod 20435 df-nzr 20529 df-dsmm 20939 df-frlm 20954 df-uvc 20990 |
This theorem is referenced by: ellspd 21009 indlcim 21047 lnrfg 40944 |
Copyright terms: Public domain | W3C validator |