MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup3 Structured version   Visualization version   GIF version

Theorem frlmup3 20489
Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
frlmup.k 𝐾 = (LSpan‘𝑇)
Assertion
Ref Expression
frlmup3 (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝑥,𝐾   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmup.b . . . 4 𝐵 = (Base‘𝐹)
3 frlmup.c . . . 4 𝐶 = (Base‘𝑇)
4 frlmup.v . . . 4 · = ( ·𝑠𝑇)
5 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
6 frlmup.t . . . 4 (𝜑𝑇 ∈ LMod)
7 frlmup.i . . . 4 (𝜑𝐼𝑋)
8 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
9 frlmup.a . . . 4 (𝜑𝐴:𝐼𝐶)
101, 2, 3, 4, 5, 6, 7, 8, 9frlmup1 20487 . . 3 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
11 eqid 2798 . . . . . . . 8 (Scalar‘𝑇) = (Scalar‘𝑇)
1211lmodring 19635 . . . . . . 7 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
136, 12syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑇) ∈ Ring)
148, 13eqeltrd 2890 . . . . 5 (𝜑𝑅 ∈ Ring)
15 eqid 2798 . . . . . 6 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
1615, 1, 2uvcff 20480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → (𝑅 unitVec 𝐼):𝐼𝐵)
1714, 7, 16syl2anc 587 . . . 4 (𝜑 → (𝑅 unitVec 𝐼):𝐼𝐵)
1817frnd 6494 . . 3 (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵)
19 eqid 2798 . . . 4 (LSpan‘𝐹) = (LSpan‘𝐹)
20 frlmup.k . . . 4 𝐾 = (LSpan‘𝑇)
212, 19, 20lmhmlsp 19814 . . 3 ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
2210, 18, 21syl2anc 587 . 2 (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
232, 3lmhmf 19799 . . . . . 6 (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵𝐶)
2410, 23syl 17 . . . . 5 (𝜑𝐸:𝐵𝐶)
2524ffnd 6488 . . . 4 (𝜑𝐸 Fn 𝐵)
26 fnima 6450 . . . 4 (𝐸 Fn 𝐵 → (𝐸𝐵) = ran 𝐸)
2725, 26syl 17 . . 3 (𝜑 → (𝐸𝐵) = ran 𝐸)
28 eqid 2798 . . . . . . . 8 (LBasis‘𝐹) = (LBasis‘𝐹)
291, 15, 28frlmlbs 20486 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
3014, 7, 29syl2anc 587 . . . . . 6 (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
312, 28, 19lbssp 19844 . . . . . 6 (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵)
3230, 31syl 17 . . . . 5 (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵)
3332eqcomd 2804 . . . 4 (𝜑𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))
3433imaeq2d 5896 . . 3 (𝜑 → (𝐸𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))))
3527, 34eqtr3d 2835 . 2 (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))))
36 imaco 6071 . . . 4 ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼))
379ffnd 6488 . . . . . . 7 (𝜑𝐴 Fn 𝐼)
3817ffnd 6488 . . . . . . . 8 (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼)
39 fnco 6437 . . . . . . . 8 ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼)
4025, 38, 18, 39syl3anc 1368 . . . . . . 7 (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼)
41 fvco2 6735 . . . . . . . . 9 (((𝑅 unitVec 𝐼) Fn 𝐼𝑢𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)))
4238, 41sylan 583 . . . . . . . 8 ((𝜑𝑢𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)))
436adantr 484 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑇 ∈ LMod)
447adantr 484 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝐼𝑋)
458adantr 484 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑅 = (Scalar‘𝑇))
469adantr 484 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝐴:𝐼𝐶)
47 simpr 488 . . . . . . . . 9 ((𝜑𝑢𝐼) → 𝑢𝐼)
481, 2, 3, 4, 5, 43, 44, 45, 46, 47, 15frlmup2 20488 . . . . . . . 8 ((𝜑𝑢𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴𝑢))
4942, 48eqtr2d 2834 . . . . . . 7 ((𝜑𝑢𝐼) → (𝐴𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢))
5037, 40, 49eqfnfvd 6782 . . . . . 6 (𝜑𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼)))
5150imaeq1d 5895 . . . . 5 (𝜑 → (𝐴𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼))
52 fnima 6450 . . . . . 6 (𝐴 Fn 𝐼 → (𝐴𝐼) = ran 𝐴)
5337, 52syl 17 . . . . 5 (𝜑 → (𝐴𝐼) = ran 𝐴)
5451, 53eqtr3d 2835 . . . 4 (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴)
55 fnima 6450 . . . . . 6 ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼))
5638, 55syl 17 . . . . 5 (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼))
5756imaeq2d 5896 . . . 4 (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼)))
5836, 54, 573eqtr3a 2857 . . 3 (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼)))
5958fveq2d 6649 . 2 (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼))))
6022, 35, 593eqtr4d 2843 1 (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wss 3881  cmpt 5110  ran crn 5520  cima 5522  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561   Σg cgsu 16706  Ringcrg 19290  LModclmod 19627  LSpanclspn 19736   LMHom clmhm 19784  LBasisclbs 19839   freeLMod cfrlm 20435   unitVec cuvc 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lbs 19840  df-sra 19937  df-rgmod 19938  df-nzr 20024  df-dsmm 20421  df-frlm 20436  df-uvc 20472
This theorem is referenced by:  ellspd  20491  indlcim  20529  lnrfg  40063
  Copyright terms: Public domain W3C validator