| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmup3 | Structured version Visualization version GIF version | ||
| Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmup.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| frlmup.b | ⊢ 𝐵 = (Base‘𝐹) |
| frlmup.c | ⊢ 𝐶 = (Base‘𝑇) |
| frlmup.v | ⊢ · = ( ·𝑠 ‘𝑇) |
| frlmup.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
| frlmup.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| frlmup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| frlmup.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
| frlmup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
| frlmup.k | ⊢ 𝐾 = (LSpan‘𝑇) |
| Ref | Expression |
|---|---|
| frlmup3 | ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmup.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | frlmup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | frlmup.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | frlmup.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑇) | |
| 5 | frlmup.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
| 6 | frlmup.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 7 | frlmup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 8 | frlmup.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
| 9 | frlmup.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | frlmup1 21707 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 12 | 11 | lmodring 20774 | . . . . . . 7 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
| 13 | 6, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
| 14 | 8, 13 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
| 16 | 15, 1, 2 | uvcff 21700 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
| 17 | 14, 7, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
| 18 | 17 | frnd 6696 | . . 3 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵) |
| 19 | eqid 2729 | . . . 4 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
| 20 | frlmup.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑇) | |
| 21 | 2, 19, 20 | lmhmlsp 20956 | . . 3 ⊢ ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
| 22 | 10, 18, 21 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
| 23 | 2, 3 | lmhmf 20941 | . . . . . 6 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵⟶𝐶) |
| 24 | 10, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
| 25 | 24 | ffnd 6689 | . . . 4 ⊢ (𝜑 → 𝐸 Fn 𝐵) |
| 26 | fnima 6648 | . . . 4 ⊢ (𝐸 Fn 𝐵 → (𝐸 “ 𝐵) = ran 𝐸) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = ran 𝐸) |
| 28 | eqid 2729 | . . . . . . . 8 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
| 29 | 1, 15, 28 | frlmlbs 21706 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
| 30 | 14, 7, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
| 31 | 2, 28, 19 | lbssp 20986 | . . . . . 6 ⊢ (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
| 33 | 32 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → 𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) |
| 34 | 33 | imaeq2d 6031 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
| 35 | 27, 34 | eqtr3d 2766 | . 2 ⊢ (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
| 36 | imaco 6224 | . . . 4 ⊢ ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) | |
| 37 | 9 | ffnd 6689 | . . . . . . 7 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
| 38 | 17 | ffnd 6689 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼) |
| 39 | fnco 6636 | . . . . . . . 8 ⊢ ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) | |
| 40 | 25, 38, 18, 39 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) |
| 41 | fvco2 6958 | . . . . . . . . 9 ⊢ (((𝑅 unitVec 𝐼) Fn 𝐼 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) | |
| 42 | 38, 41 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) |
| 43 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑇 ∈ LMod) |
| 44 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
| 45 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑅 = (Scalar‘𝑇)) |
| 46 | 9 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐴:𝐼⟶𝐶) |
| 47 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑢 ∈ 𝐼) | |
| 48 | 1, 2, 3, 4, 5, 43, 44, 45, 46, 47, 15 | frlmup2 21708 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴‘𝑢)) |
| 49 | 42, 48 | eqtr2d 2765 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐴‘𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢)) |
| 50 | 37, 40, 49 | eqfnfvd 7006 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼))) |
| 51 | 50 | imaeq1d 6030 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼)) |
| 52 | fnima 6648 | . . . . . 6 ⊢ (𝐴 Fn 𝐼 → (𝐴 “ 𝐼) = ran 𝐴) | |
| 53 | 37, 52 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ran 𝐴) |
| 54 | 51, 53 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴) |
| 55 | fnima 6648 | . . . . . 6 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) | |
| 56 | 38, 55 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) |
| 57 | 56 | imaeq2d 6031 | . . . 4 ⊢ (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
| 58 | 36, 54, 57 | 3eqtr3a 2788 | . . 3 ⊢ (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
| 59 | 58 | fveq2d 6862 | . 2 ⊢ (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
| 60 | 22, 35, 59 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ↦ cmpt 5188 ran crn 5639 “ cima 5641 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 Σg cgsu 17403 Ringcrg 20142 LModclmod 20766 LSpanclspn 20877 LMHom clmhm 20926 LBasisclbs 20981 freeLMod cfrlm 21655 unitVec cuvc 21691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-nzr 20422 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lbs 20982 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-uvc 21692 |
| This theorem is referenced by: ellspd 21711 indlcim 21749 lnrfg 43108 |
| Copyright terms: Public domain | W3C validator |