| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmup3 | Structured version Visualization version GIF version | ||
| Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmup.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| frlmup.b | ⊢ 𝐵 = (Base‘𝐹) |
| frlmup.c | ⊢ 𝐶 = (Base‘𝑇) |
| frlmup.v | ⊢ · = ( ·𝑠 ‘𝑇) |
| frlmup.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
| frlmup.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| frlmup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| frlmup.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
| frlmup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
| frlmup.k | ⊢ 𝐾 = (LSpan‘𝑇) |
| Ref | Expression |
|---|---|
| frlmup3 | ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmup.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | frlmup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | frlmup.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | frlmup.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑇) | |
| 5 | frlmup.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
| 6 | frlmup.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 7 | frlmup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 8 | frlmup.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
| 9 | frlmup.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | frlmup1 21740 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 12 | 11 | lmodring 20806 | . . . . . . 7 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
| 13 | 6, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
| 14 | 8, 13 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
| 16 | 15, 1, 2 | uvcff 21733 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
| 17 | 14, 7, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
| 18 | 17 | frnd 6678 | . . 3 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵) |
| 19 | eqid 2729 | . . . 4 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
| 20 | frlmup.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑇) | |
| 21 | 2, 19, 20 | lmhmlsp 20988 | . . 3 ⊢ ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
| 22 | 10, 18, 21 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
| 23 | 2, 3 | lmhmf 20973 | . . . . . 6 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵⟶𝐶) |
| 24 | 10, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
| 25 | 24 | ffnd 6671 | . . . 4 ⊢ (𝜑 → 𝐸 Fn 𝐵) |
| 26 | fnima 6630 | . . . 4 ⊢ (𝐸 Fn 𝐵 → (𝐸 “ 𝐵) = ran 𝐸) | |
| 27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = ran 𝐸) |
| 28 | eqid 2729 | . . . . . . . 8 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
| 29 | 1, 15, 28 | frlmlbs 21739 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
| 30 | 14, 7, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
| 31 | 2, 28, 19 | lbssp 21018 | . . . . . 6 ⊢ (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
| 33 | 32 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → 𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) |
| 34 | 33 | imaeq2d 6020 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
| 35 | 27, 34 | eqtr3d 2766 | . 2 ⊢ (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
| 36 | imaco 6212 | . . . 4 ⊢ ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) | |
| 37 | 9 | ffnd 6671 | . . . . . . 7 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
| 38 | 17 | ffnd 6671 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼) |
| 39 | fnco 6618 | . . . . . . . 8 ⊢ ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) | |
| 40 | 25, 38, 18, 39 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) |
| 41 | fvco2 6940 | . . . . . . . . 9 ⊢ (((𝑅 unitVec 𝐼) Fn 𝐼 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) | |
| 42 | 38, 41 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) |
| 43 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑇 ∈ LMod) |
| 44 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
| 45 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑅 = (Scalar‘𝑇)) |
| 46 | 9 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐴:𝐼⟶𝐶) |
| 47 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑢 ∈ 𝐼) | |
| 48 | 1, 2, 3, 4, 5, 43, 44, 45, 46, 47, 15 | frlmup2 21741 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴‘𝑢)) |
| 49 | 42, 48 | eqtr2d 2765 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐴‘𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢)) |
| 50 | 37, 40, 49 | eqfnfvd 6988 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼))) |
| 51 | 50 | imaeq1d 6019 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼)) |
| 52 | fnima 6630 | . . . . . 6 ⊢ (𝐴 Fn 𝐼 → (𝐴 “ 𝐼) = ran 𝐴) | |
| 53 | 37, 52 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ran 𝐴) |
| 54 | 51, 53 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴) |
| 55 | fnima 6630 | . . . . . 6 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) | |
| 56 | 38, 55 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) |
| 57 | 56 | imaeq2d 6020 | . . . 4 ⊢ (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
| 58 | 36, 54, 57 | 3eqtr3a 2788 | . . 3 ⊢ (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
| 59 | 58 | fveq2d 6844 | . 2 ⊢ (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
| 60 | 22, 35, 59 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ↦ cmpt 5183 ran crn 5632 “ cima 5634 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 Σg cgsu 17379 Ringcrg 20153 LModclmod 20798 LSpanclspn 20909 LMHom clmhm 20958 LBasisclbs 21013 freeLMod cfrlm 21688 unitVec cuvc 21724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-nzr 20433 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-lmhm 20961 df-lbs 21014 df-sra 21112 df-rgmod 21113 df-dsmm 21674 df-frlm 21689 df-uvc 21725 |
| This theorem is referenced by: ellspd 21744 indlcim 21782 lnrfg 43101 |
| Copyright terms: Public domain | W3C validator |