![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprd2db | Structured version Visualization version GIF version |
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprd2db | ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprd2d.1 | . . . 4 ⊢ (𝜑 → Rel 𝐴) | |
2 | dprd2d.2 | . . . 4 ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) | |
3 | dprd2d.3 | . . . 4 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
4 | dprd2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
5 | dprd2d.5 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) | |
6 | dprd2d.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
7 | 1, 2, 3, 4, 5, 6 | dprd2da 20028 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
8 | 6 | dprdspan 20013 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
10 | relssres 6027 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐼) → (𝐴 ↾ 𝐼) = 𝐴) | |
11 | 1, 3, 10 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↾ 𝐼) = 𝐴) |
12 | 11 | imaeq2d 6064 | . . . . 5 ⊢ (𝜑 → (𝑆 “ (𝐴 ↾ 𝐼)) = (𝑆 “ 𝐴)) |
13 | ffn 6723 | . . . . . 6 ⊢ (𝑆:𝐴⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐴) | |
14 | fnima 6686 | . . . . . 6 ⊢ (𝑆 Fn 𝐴 → (𝑆 “ 𝐴) = ran 𝑆) | |
15 | 2, 13, 14 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑆 “ 𝐴) = ran 𝑆) |
16 | 12, 15 | eqtr2d 2766 | . . . 4 ⊢ (𝜑 → ran 𝑆 = (𝑆 “ (𝐴 ↾ 𝐼))) |
17 | 16 | unieqd 4922 | . . 3 ⊢ (𝜑 → ∪ ran 𝑆 = ∪ (𝑆 “ (𝐴 ↾ 𝐼))) |
18 | 17 | fveq2d 6900 | . 2 ⊢ (𝜑 → (𝐾‘∪ ran 𝑆) = (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼)))) |
19 | ssidd 4000 | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
20 | 1, 2, 3, 4, 5, 6, 19 | dprd2dlem1 20027 | . 2 ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼))) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
21 | 9, 18, 20 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 {csn 4630 ∪ cuni 4909 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5678 ran crn 5679 ↾ cres 5680 “ cima 5681 Rel wrel 5683 Fn wfn 6544 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 mrClscmrc 17582 SubGrpcsubg 19100 DProd cdprd 19979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14008 df-hash 14334 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-0g 17442 df-gsum 17443 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19048 df-subg 19103 df-ghm 19193 df-gim 19239 df-cntz 19297 df-oppg 19326 df-lsm 19620 df-cmn 19766 df-dprd 19981 |
This theorem is referenced by: dprd2d2 20030 |
Copyright terms: Public domain | W3C validator |