| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprd2db | Structured version Visualization version GIF version | ||
| Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
| dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
| dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
| dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
| dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| dprd2db | ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd2d.1 | . . . 4 ⊢ (𝜑 → Rel 𝐴) | |
| 2 | dprd2d.2 | . . . 4 ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) | |
| 3 | dprd2d.3 | . . . 4 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
| 4 | dprd2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
| 5 | dprd2d.5 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) | |
| 6 | dprd2d.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 7 | 1, 2, 3, 4, 5, 6 | dprd2da 20025 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 8 | 6 | dprdspan 20010 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| 10 | relssres 6009 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐼) → (𝐴 ↾ 𝐼) = 𝐴) | |
| 11 | 1, 3, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↾ 𝐼) = 𝐴) |
| 12 | 11 | imaeq2d 6047 | . . . . 5 ⊢ (𝜑 → (𝑆 “ (𝐴 ↾ 𝐼)) = (𝑆 “ 𝐴)) |
| 13 | ffn 6706 | . . . . . 6 ⊢ (𝑆:𝐴⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐴) | |
| 14 | fnima 6668 | . . . . . 6 ⊢ (𝑆 Fn 𝐴 → (𝑆 “ 𝐴) = ran 𝑆) | |
| 15 | 2, 13, 14 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑆 “ 𝐴) = ran 𝑆) |
| 16 | 12, 15 | eqtr2d 2771 | . . . 4 ⊢ (𝜑 → ran 𝑆 = (𝑆 “ (𝐴 ↾ 𝐼))) |
| 17 | 16 | unieqd 4896 | . . 3 ⊢ (𝜑 → ∪ ran 𝑆 = ∪ (𝑆 “ (𝐴 ↾ 𝐼))) |
| 18 | 17 | fveq2d 6880 | . 2 ⊢ (𝜑 → (𝐾‘∪ ran 𝑆) = (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼)))) |
| 19 | ssidd 3982 | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
| 20 | 1, 2, 3, 4, 5, 6, 19 | dprd2dlem1 20024 | . 2 ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼))) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
| 21 | 9, 18, 20 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 ∪ cuni 4883 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 ↾ cres 5656 “ cima 5657 Rel wrel 5659 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 mrClscmrc 17595 SubGrpcsubg 19103 DProd cdprd 19976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-gim 19242 df-cntz 19300 df-oppg 19329 df-lsm 19617 df-cmn 19763 df-dprd 19978 |
| This theorem is referenced by: dprd2d2 20027 |
| Copyright terms: Public domain | W3C validator |