| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprd2db | Structured version Visualization version GIF version | ||
| Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
| dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
| dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
| dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
| dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
| dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| dprd2db | ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd2d.1 | . . . 4 ⊢ (𝜑 → Rel 𝐴) | |
| 2 | dprd2d.2 | . . . 4 ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) | |
| 3 | dprd2d.3 | . . . 4 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
| 4 | dprd2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
| 5 | dprd2d.5 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) | |
| 6 | dprd2d.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 7 | 1, 2, 3, 4, 5, 6 | dprd2da 19974 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 8 | 6 | dprdspan 19959 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
| 10 | relssres 5993 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐼) → (𝐴 ↾ 𝐼) = 𝐴) | |
| 11 | 1, 3, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↾ 𝐼) = 𝐴) |
| 12 | 11 | imaeq2d 6031 | . . . . 5 ⊢ (𝜑 → (𝑆 “ (𝐴 ↾ 𝐼)) = (𝑆 “ 𝐴)) |
| 13 | ffn 6688 | . . . . . 6 ⊢ (𝑆:𝐴⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐴) | |
| 14 | fnima 6648 | . . . . . 6 ⊢ (𝑆 Fn 𝐴 → (𝑆 “ 𝐴) = ran 𝑆) | |
| 15 | 2, 13, 14 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑆 “ 𝐴) = ran 𝑆) |
| 16 | 12, 15 | eqtr2d 2765 | . . . 4 ⊢ (𝜑 → ran 𝑆 = (𝑆 “ (𝐴 ↾ 𝐼))) |
| 17 | 16 | unieqd 4884 | . . 3 ⊢ (𝜑 → ∪ ran 𝑆 = ∪ (𝑆 “ (𝐴 ↾ 𝐼))) |
| 18 | 17 | fveq2d 6862 | . 2 ⊢ (𝜑 → (𝐾‘∪ ran 𝑆) = (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼)))) |
| 19 | ssidd 3970 | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
| 20 | 1, 2, 3, 4, 5, 6, 19 | dprd2dlem1 19973 | . 2 ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼))) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
| 21 | 9, 18, 20 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Rel wrel 5643 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 mrClscmrc 17544 SubGrpcsubg 19052 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-dprd 19927 |
| This theorem is referenced by: dprd2d2 19976 |
| Copyright terms: Public domain | W3C validator |