Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprd2db | Structured version Visualization version GIF version |
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprd2db | ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprd2d.1 | . . . 4 ⊢ (𝜑 → Rel 𝐴) | |
2 | dprd2d.2 | . . . 4 ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) | |
3 | dprd2d.3 | . . . 4 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
4 | dprd2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
5 | dprd2d.5 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) | |
6 | dprd2d.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
7 | 1, 2, 3, 4, 5, 6 | dprd2da 19635 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
8 | 6 | dprdspan 19620 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
10 | relssres 5930 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐼) → (𝐴 ↾ 𝐼) = 𝐴) | |
11 | 1, 3, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↾ 𝐼) = 𝐴) |
12 | 11 | imaeq2d 5967 | . . . . 5 ⊢ (𝜑 → (𝑆 “ (𝐴 ↾ 𝐼)) = (𝑆 “ 𝐴)) |
13 | ffn 6597 | . . . . . 6 ⊢ (𝑆:𝐴⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐴) | |
14 | fnima 6560 | . . . . . 6 ⊢ (𝑆 Fn 𝐴 → (𝑆 “ 𝐴) = ran 𝑆) | |
15 | 2, 13, 14 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑆 “ 𝐴) = ran 𝑆) |
16 | 12, 15 | eqtr2d 2781 | . . . 4 ⊢ (𝜑 → ran 𝑆 = (𝑆 “ (𝐴 ↾ 𝐼))) |
17 | 16 | unieqd 4859 | . . 3 ⊢ (𝜑 → ∪ ran 𝑆 = ∪ (𝑆 “ (𝐴 ↾ 𝐼))) |
18 | 17 | fveq2d 6773 | . 2 ⊢ (𝜑 → (𝐾‘∪ ran 𝑆) = (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼)))) |
19 | ssidd 3949 | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
20 | 1, 2, 3, 4, 5, 6, 19 | dprd2dlem1 19634 | . 2 ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼))) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
21 | 9, 18, 20 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 {csn 4567 ∪ cuni 4845 class class class wbr 5079 ↦ cmpt 5162 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Rel wrel 5594 Fn wfn 6426 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 mrClscmrc 17282 SubGrpcsubg 18739 DProd cdprd 19586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7702 df-1st 7818 df-2nd 7819 df-supp 7963 df-tpos 8027 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-er 8473 df-map 8592 df-ixp 8661 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-fsupp 9099 df-oi 9239 df-card 9690 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-n0 12226 df-z 12312 df-uz 12574 df-fz 13231 df-fzo 13374 df-seq 13712 df-hash 14035 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-plusg 16965 df-0g 17142 df-gsum 17143 df-mre 17285 df-mrc 17286 df-acs 17288 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-mhm 18420 df-submnd 18421 df-grp 18570 df-minusg 18571 df-sbg 18572 df-mulg 18691 df-subg 18742 df-ghm 18822 df-gim 18865 df-cntz 18913 df-oppg 18940 df-lsm 19231 df-cmn 19378 df-dprd 19588 |
This theorem is referenced by: dprd2d2 19637 |
Copyright terms: Public domain | W3C validator |