![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprd2db | Structured version Visualization version GIF version |
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprd2d.1 | ⊢ (𝜑 → Rel 𝐴) |
dprd2d.2 | ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
dprd2d.3 | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) |
dprd2d.4 | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) |
dprd2d.5 | ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) |
dprd2d.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprd2db | ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprd2d.1 | . . . 4 ⊢ (𝜑 → Rel 𝐴) | |
2 | dprd2d.2 | . . . 4 ⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) | |
3 | dprd2d.3 | . . . 4 ⊢ (𝜑 → dom 𝐴 ⊆ 𝐼) | |
4 | dprd2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) | |
5 | dprd2d.5 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) | |
6 | dprd2d.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
7 | 1, 2, 3, 4, 5, 6 | dprd2da 19953 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
8 | 6 | dprdspan 19938 | . . 3 ⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐾‘∪ ran 𝑆)) |
10 | relssres 6022 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐼) → (𝐴 ↾ 𝐼) = 𝐴) | |
11 | 1, 3, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↾ 𝐼) = 𝐴) |
12 | 11 | imaeq2d 6059 | . . . . 5 ⊢ (𝜑 → (𝑆 “ (𝐴 ↾ 𝐼)) = (𝑆 “ 𝐴)) |
13 | ffn 6717 | . . . . . 6 ⊢ (𝑆:𝐴⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐴) | |
14 | fnima 6680 | . . . . . 6 ⊢ (𝑆 Fn 𝐴 → (𝑆 “ 𝐴) = ran 𝑆) | |
15 | 2, 13, 14 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑆 “ 𝐴) = ran 𝑆) |
16 | 12, 15 | eqtr2d 2773 | . . . 4 ⊢ (𝜑 → ran 𝑆 = (𝑆 “ (𝐴 ↾ 𝐼))) |
17 | 16 | unieqd 4922 | . . 3 ⊢ (𝜑 → ∪ ran 𝑆 = ∪ (𝑆 “ (𝐴 ↾ 𝐼))) |
18 | 17 | fveq2d 6895 | . 2 ⊢ (𝜑 → (𝐾‘∪ ran 𝑆) = (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼)))) |
19 | ssidd 4005 | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
20 | 1, 2, 3, 4, 5, 6, 19 | dprd2dlem1 19952 | . 2 ⊢ (𝜑 → (𝐾‘∪ (𝑆 “ (𝐴 ↾ 𝐼))) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
21 | 9, 18, 20 | 3eqtrd 2776 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 {csn 4628 ∪ cuni 4908 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5676 ran crn 5677 ↾ cres 5678 “ cima 5679 Rel wrel 5681 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 (class class class)co 7411 mrClscmrc 17531 SubGrpcsubg 19036 DProd cdprd 19904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-gsum 17392 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-ghm 19128 df-gim 19173 df-cntz 19222 df-oppg 19251 df-lsm 19545 df-cmn 19691 df-dprd 19906 |
This theorem is referenced by: dprd2d2 19955 |
Copyright terms: Public domain | W3C validator |