![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpfsubrg | Structured version Visualization version GIF version |
Description: Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.) |
Ref | Expression |
---|---|
mpfsubrg.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
Ref | Expression |
---|---|
mpfsubrg | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . 5 ⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) | |
2 | eqid 2799 | . . . . 5 ⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) | |
3 | eqid 2799 | . . . . 5 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
4 | eqid 2799 | . . . . 5 ⊢ (𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)) = (𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)) | |
5 | eqid 2799 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
6 | 1, 2, 3, 4, 5 | evlsrhm 19843 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
7 | eqid 2799 | . . . . 5 ⊢ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
8 | eqid 2799 | . . . . 5 ⊢ (Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) = (Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) | |
9 | 7, 8 | rhmf 19044 | . . . 4 ⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
10 | ffn 6256 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
11 | fnima 6221 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅)) |
13 | 6, 9, 12 | 3syl 18 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅)) |
14 | mpfsubrg.q | . . 3 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
15 | 13, 14 | syl6reqr 2852 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
16 | 3 | subrgring 19101 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝑅) ∈ Ring) |
17 | 2 | mplring 19775 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
18 | 16, 17 | sylan2 587 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
19 | 18 | 3adant2 1162 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
20 | 7 | subrgid 19100 | . . . 4 ⊢ ((𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring → (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
22 | rhmima 19129 | . . 3 ⊢ ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼))) ∧ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) | |
23 | 6, 21, 22 | syl2anc 580 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
24 | 15, 23 | eqeltrd 2878 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑𝑚 𝐼)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ran crn 5313 “ cima 5315 Fn wfn 6096 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 Basecbs 16184 ↾s cress 16185 ↑s cpws 16422 Ringcrg 18863 CRingccrg 18864 RingHom crh 19030 SubRingcsubrg 19094 mPoly cmpl 19676 evalSub ces 19826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-ofr 7132 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-0g 16417 df-gsum 16418 df-prds 16423 df-pws 16425 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-ghm 17971 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-srg 18822 df-ring 18865 df-cring 18866 df-rnghom 19033 df-subrg 19096 df-lmod 19183 df-lss 19251 df-lsp 19293 df-assa 19635 df-asp 19636 df-ascl 19637 df-psr 19679 df-mvr 19680 df-mpl 19681 df-evls 19828 |
This theorem is referenced by: mpff 19855 mpfaddcl 19856 mpfmulcl 19857 |
Copyright terms: Public domain | W3C validator |