MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gafo Structured version   Visualization version   GIF version

Theorem gafo 19203
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaf.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gafo ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)

Proof of Theorem gafo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaf.1 . . 3 𝑋 = (Base‘𝐺)
21gaf 19202 . 2 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3 gagrp 19199 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
43adantr 479 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝐺 ∈ Grp)
5 eqid 2730 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 18888 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
74, 6syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → (0g𝐺) ∈ 𝑋)
8 simpr 483 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥𝑌)
95gagrpid 19201 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
109eqcomd 2736 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥 = ((0g𝐺) 𝑥))
11 rspceov 7460 . . . 4 (((0g𝐺) ∈ 𝑋𝑥𝑌𝑥 = ((0g𝐺) 𝑥)) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
127, 8, 10, 11syl3anc 1369 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
1312ralrimiva 3144 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
14 foov 7585 . 2 ( :(𝑋 × 𝑌)–onto𝑌 ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧)))
152, 13, 14sylanbrc 581 1 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  wrex 3068   × cxp 5675  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7413  Basecbs 17150  0gc0g 17391  Grpcgrp 18857   GrpAct cga 19196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-0g 17393  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18860  df-ga 19197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator