| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gafo | Structured version Visualization version GIF version | ||
| Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gaf.1 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| gafo | ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | 1 | gaf 19282 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 3 | gagrp 19279 | . . . . . 6 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝐺 ∈ Grp) |
| 5 | eqid 2734 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 5 | grpidcl 18952 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
| 8 | simpr 484 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
| 9 | 5 | gagrpid 19281 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑥) = 𝑥) |
| 10 | 9 | eqcomd 2740 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) |
| 11 | rspceov 7462 | . . . 4 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) | |
| 12 | 7, 8, 10, 11 | syl3anc 1372 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
| 13 | 12 | ralrimiva 3133 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
| 14 | foov 7589 | . 2 ⊢ ( ⊕ :(𝑋 × 𝑌)–onto→𝑌 ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧))) | |
| 15 | 2, 13, 14 | sylanbrc 583 | 1 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 × cxp 5663 ⟶wf 6537 –onto→wfo 6539 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 0gc0g 17455 Grpcgrp 18920 GrpAct cga 19276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-ga 19277 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |