MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gafo Structured version   Visualization version   GIF version

Theorem gafo 18902
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaf.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gafo ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)

Proof of Theorem gafo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaf.1 . . 3 𝑋 = (Base‘𝐺)
21gaf 18901 . 2 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3 gagrp 18898 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
43adantr 481 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝐺 ∈ Grp)
5 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 18607 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
74, 6syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → (0g𝐺) ∈ 𝑋)
8 simpr 485 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥𝑌)
95gagrpid 18900 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
109eqcomd 2744 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥 = ((0g𝐺) 𝑥))
11 rspceov 7322 . . . 4 (((0g𝐺) ∈ 𝑋𝑥𝑌𝑥 = ((0g𝐺) 𝑥)) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
127, 8, 10, 11syl3anc 1370 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
1312ralrimiva 3103 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
14 foov 7446 . 2 ( :(𝑋 × 𝑌)–onto𝑌 ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧)))
152, 13, 14sylanbrc 583 1 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   × cxp 5587  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  Basecbs 16912  0gc0g 17150  Grpcgrp 18577   GrpAct cga 18895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ga 18896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator