| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gafo | Structured version Visualization version GIF version | ||
| Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gaf.1 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| gafo | ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | 1 | gaf 19233 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 3 | gagrp 19230 | . . . . . 6 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝐺 ∈ Grp) |
| 5 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 5 | grpidcl 18903 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
| 8 | simpr 484 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
| 9 | 5 | gagrpid 19232 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑥) = 𝑥) |
| 10 | 9 | eqcomd 2736 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) |
| 11 | rspceov 7438 | . . . 4 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) | |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
| 13 | 12 | ralrimiva 3126 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
| 14 | foov 7565 | . 2 ⊢ ( ⊕ :(𝑋 × 𝑌)–onto→𝑌 ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧))) | |
| 15 | 2, 13, 14 | sylanbrc 583 | 1 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 × cxp 5638 ⟶wf 6509 –onto→wfo 6511 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 0gc0g 17408 Grpcgrp 18871 GrpAct cga 19227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-ga 19228 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |