| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gafo | Structured version Visualization version GIF version | ||
| Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gaf.1 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| gafo | ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | 1 | gaf 19207 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 3 | gagrp 19204 | . . . . . 6 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝐺 ∈ Grp) |
| 5 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 5 | grpidcl 18878 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
| 8 | simpr 484 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
| 9 | 5 | gagrpid 19206 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑥) = 𝑥) |
| 10 | 9 | eqcomd 2737 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) |
| 11 | rspceov 7395 | . . . 4 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) | |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
| 13 | 12 | ralrimiva 3124 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
| 14 | foov 7520 | . 2 ⊢ ( ⊕ :(𝑋 × 𝑌)–onto→𝑌 ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧))) | |
| 15 | 2, 13, 14 | sylanbrc 583 | 1 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 × cxp 5612 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 0gc0g 17343 Grpcgrp 18846 GrpAct cga 19201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-ga 19202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |