MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gafo Structured version   Visualization version   GIF version

Theorem gafo 18900
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaf.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gafo ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)

Proof of Theorem gafo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaf.1 . . 3 𝑋 = (Base‘𝐺)
21gaf 18899 . 2 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3 gagrp 18896 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
43adantr 481 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝐺 ∈ Grp)
5 eqid 2740 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 18605 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
74, 6syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → (0g𝐺) ∈ 𝑋)
8 simpr 485 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥𝑌)
95gagrpid 18898 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
109eqcomd 2746 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥 = ((0g𝐺) 𝑥))
11 rspceov 7318 . . . 4 (((0g𝐺) ∈ 𝑋𝑥𝑌𝑥 = ((0g𝐺) 𝑥)) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
127, 8, 10, 11syl3anc 1370 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
1312ralrimiva 3110 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
14 foov 7440 . 2 ( :(𝑋 × 𝑌)–onto𝑌 ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧)))
152, 13, 14sylanbrc 583 1 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067   × cxp 5588  wf 6428  ontowfo 6430  cfv 6432  (class class class)co 7271  Basecbs 16910  0gc0g 17148  Grpcgrp 18575   GrpAct cga 18893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fo 6438  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-map 8600  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-ga 18894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator