MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gafo Structured version   Visualization version   GIF version

Theorem gafo 19228
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaf.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gafo ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)

Proof of Theorem gafo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaf.1 . . 3 𝑋 = (Base‘𝐺)
21gaf 19227 . 2 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3 gagrp 19224 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
43adantr 480 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝐺 ∈ Grp)
5 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 18897 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
74, 6syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → (0g𝐺) ∈ 𝑋)
8 simpr 484 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥𝑌)
95gagrpid 19226 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
109eqcomd 2735 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → 𝑥 = ((0g𝐺) 𝑥))
11 rspceov 7436 . . . 4 (((0g𝐺) ∈ 𝑋𝑥𝑌𝑥 = ((0g𝐺) 𝑥)) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
127, 8, 10, 11syl3anc 1373 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ∃𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
1312ralrimiva 3125 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧))
14 foov 7563 . 2 ( :(𝑋 × 𝑌)–onto𝑌 ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌𝑦𝑋𝑧𝑌 𝑥 = (𝑦 𝑧)))
152, 13, 14sylanbrc 583 1 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)–onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   × cxp 5636  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  Basecbs 17179  0gc0g 17402  Grpcgrp 18865   GrpAct cga 19221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-ga 19222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator