![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gafo | Structured version Visualization version GIF version |
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
gaf.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
gafo | ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gaf.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | 1 | gaf 18122 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
3 | gagrp 18119 | . . . . . 6 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | |
4 | 3 | adantr 474 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝐺 ∈ Grp) |
5 | eqid 2778 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 5 | grpidcl 17848 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
8 | simpr 479 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
9 | 5 | gagrpid 18121 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑥) = 𝑥) |
10 | 9 | eqcomd 2784 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) |
11 | rspceov 6970 | . . . 4 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) | |
12 | 7, 8, 10, 11 | syl3anc 1439 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
13 | 12 | ralrimiva 3148 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
14 | foov 7087 | . 2 ⊢ ( ⊕ :(𝑋 × 𝑌)–onto→𝑌 ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧))) | |
15 | 2, 13, 14 | sylanbrc 578 | 1 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 × cxp 5355 ⟶wf 6133 –onto→wfo 6135 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 0gc0g 16497 Grpcgrp 17820 GrpAct cga 18116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fo 6143 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-map 8144 df-0g 16499 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-grp 17823 df-ga 18117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |