![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gafo | Structured version Visualization version GIF version |
Description: A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
gaf.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
gafo | ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gaf.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | 1 | gaf 19335 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
3 | gagrp 19332 | . . . . . 6 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝐺 ∈ Grp) |
5 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 5 | grpidcl 19005 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
8 | simpr 484 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) | |
9 | 5 | gagrpid 19334 | . . . . 5 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑥) = 𝑥) |
10 | 9 | eqcomd 2743 | . . . 4 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) |
11 | rspceov 7487 | . . . 4 ⊢ (((0g‘𝐺) ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑥 = ((0g‘𝐺) ⊕ 𝑥)) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) | |
12 | 7, 8, 10, 11 | syl3anc 1372 | . . 3 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥 ∈ 𝑌) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
13 | 12 | ralrimiva 3146 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧)) |
14 | foov 7614 | . 2 ⊢ ( ⊕ :(𝑋 × 𝑌)–onto→𝑌 ↔ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑌 𝑥 = (𝑦 ⊕ 𝑧))) | |
15 | 2, 13, 14 | sylanbrc 583 | 1 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 × cxp 5691 ⟶wf 6565 –onto→wfo 6567 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 0gc0g 17495 Grpcgrp 18973 GrpAct cga 19329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fo 6575 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-map 8876 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-ga 19330 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |