Step | Hyp | Ref
| Expression |
1 | | isgrpda.2 |
. . 3
⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
2 | | isgrpda.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
3 | 2 | ralrimivvva 3142 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
4 | | isgrpda.4 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑋) |
5 | | isgrpda.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑈𝐺𝑥) = 𝑥) |
6 | | isgrpda.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ 𝑋 (𝑛𝐺𝑥) = 𝑈) |
7 | | oveq1 6985 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → (𝑦𝐺𝑥) = (𝑛𝐺𝑥)) |
8 | 7 | eqeq1d 2780 |
. . . . . . . 8
⊢ (𝑦 = 𝑛 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑛𝐺𝑥) = 𝑈)) |
9 | 8 | cbvrexv 3384 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝑋 (𝑦𝐺𝑥) = 𝑈 ↔ ∃𝑛 ∈ 𝑋 (𝑛𝐺𝑥) = 𝑈) |
10 | 6, 9 | sylibr 226 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) |
11 | 5, 10 | jca 504 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
12 | 11 | ralrimiva 3132 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
13 | | oveq1 6985 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥)) |
14 | 13 | eqeq1d 2780 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥)) |
15 | | eqeq2 2789 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈)) |
16 | 15 | rexbidv 3242 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
17 | 14, 16 | anbi12d 621 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
18 | 17 | ralbidv 3147 |
. . . . 5
⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
19 | 18 | rspcev 3535 |
. . . 4
⊢ ((𝑈 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
20 | 4, 12, 19 | syl2anc 576 |
. . 3
⊢ (𝜑 → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
21 | 4 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑈 ∈ 𝑋) |
22 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
23 | 5 | eqcomd 2784 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 = (𝑈𝐺𝑥)) |
24 | | rspceov 7024 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑥 = (𝑈𝐺𝑥)) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧)) |
25 | 21, 22, 23, 24 | syl3anc 1351 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧)) |
26 | 25 | ralrimiva 3132 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧)) |
27 | | foov 7140 |
. . . . . . . 8
⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧))) |
28 | 1, 26, 27 | sylanbrc 575 |
. . . . . . 7
⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
29 | | forn 6424 |
. . . . . . 7
⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → ran 𝐺 = 𝑋) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝐺 = 𝑋) |
31 | 30 | sqxpeqd 5440 |
. . . . 5
⊢ (𝜑 → (ran 𝐺 × ran 𝐺) = (𝑋 × 𝑋)) |
32 | 31, 30 | feq23d 6341 |
. . . 4
⊢ (𝜑 → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
33 | 30 | raleqdv 3355 |
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
34 | 30, 33 | raleqbidv 3341 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
35 | 30, 34 | raleqbidv 3341 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
36 | 30 | rexeqdv 3356 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
37 | 36 | anbi2d 619 |
. . . . . 6
⊢ (𝜑 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
38 | 30, 37 | raleqbidv 3341 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
39 | 30, 38 | rexeqbidv 3342 |
. . . 4
⊢ (𝜑 → (∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
40 | 32, 35, 39 | 3anbi123d 1415 |
. . 3
⊢ (𝜑 → ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)))) |
41 | 1, 3, 20, 40 | mpbir3and 1322 |
. 2
⊢ (𝜑 → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢))) |
42 | | isgrpda.1 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ V) |
43 | 42, 42 | xpexd 7293 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑋) ∈ V) |
44 | | fex 6817 |
. . . 4
⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ (𝑋 × 𝑋) ∈ V) → 𝐺 ∈ V) |
45 | 1, 43, 44 | syl2anc 576 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
46 | | eqid 2778 |
. . . 4
⊢ ran 𝐺 = ran 𝐺 |
47 | 46 | isgrpo 28054 |
. . 3
⊢ (𝐺 ∈ V → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)))) |
48 | 45, 47 | syl 17 |
. 2
⊢ (𝜑 → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)))) |
49 | 41, 48 | mpbird 249 |
1
⊢ (𝜑 → 𝐺 ∈ GrpOp) |