| Step | Hyp | Ref
| Expression |
| 1 | | isgrpda.2 |
. . 3
⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| 2 | | isgrpda.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
| 3 | 2 | ralrimivvva 3205 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
| 4 | | isgrpda.4 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑋) |
| 5 | | isgrpda.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑈𝐺𝑥) = 𝑥) |
| 6 | | isgrpda.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ 𝑋 (𝑛𝐺𝑥) = 𝑈) |
| 7 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → (𝑦𝐺𝑥) = (𝑛𝐺𝑥)) |
| 8 | 7 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑦 = 𝑛 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑛𝐺𝑥) = 𝑈)) |
| 9 | 8 | cbvrexvw 3238 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝑋 (𝑦𝐺𝑥) = 𝑈 ↔ ∃𝑛 ∈ 𝑋 (𝑛𝐺𝑥) = 𝑈) |
| 10 | 6, 9 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) |
| 11 | 5, 10 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
| 12 | 11 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
| 13 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥)) |
| 14 | 13 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥)) |
| 15 | | eqeq2 2749 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈)) |
| 16 | 15 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
| 17 | 14, 16 | anbi12d 632 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 18 | 17 | ralbidv 3178 |
. . . . 5
⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 19 | 18 | rspcev 3622 |
. . . 4
⊢ ((𝑈 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ((𝑈𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
| 20 | 4, 12, 19 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
| 21 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑈 ∈ 𝑋) |
| 22 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 23 | 5 | eqcomd 2743 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 = (𝑈𝐺𝑥)) |
| 24 | | rspceov 7480 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑥 = (𝑈𝐺𝑥)) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧)) |
| 25 | 21, 22, 23, 24 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧)) |
| 26 | 25 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧)) |
| 27 | | foov 7607 |
. . . . . . . 8
⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ∃𝑧 ∈ 𝑋 𝑥 = (𝑦𝐺𝑧))) |
| 28 | 1, 26, 27 | sylanbrc 583 |
. . . . . . 7
⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
| 29 | | forn 6823 |
. . . . . . 7
⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → ran 𝐺 = 𝑋) |
| 30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝐺 = 𝑋) |
| 31 | 30 | sqxpeqd 5717 |
. . . . 5
⊢ (𝜑 → (ran 𝐺 × ran 𝐺) = (𝑋 × 𝑋)) |
| 32 | 31, 30 | feq23d 6731 |
. . . 4
⊢ (𝜑 → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
| 33 | 30 | raleqdv 3326 |
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 34 | 30, 33 | raleqbidv 3346 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 35 | 30, 34 | raleqbidv 3346 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 36 | 30 | rexeqdv 3327 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) |
| 37 | 36 | anbi2d 630 |
. . . . . 6
⊢ (𝜑 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
| 38 | 30, 37 | raleqbidv 3346 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
| 39 | 30, 38 | rexeqbidv 3347 |
. . . 4
⊢ (𝜑 → (∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢) ↔ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
| 40 | 32, 35, 39 | 3anbi123d 1438 |
. . 3
⊢ (𝜑 → ((𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)))) |
| 41 | 1, 3, 20, 40 | mpbir3and 1343 |
. 2
⊢ (𝜑 → (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢))) |
| 42 | | isgrpda.1 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ V) |
| 43 | 42, 42 | xpexd 7771 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑋) ∈ V) |
| 44 | 1, 43 | fexd 7247 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
| 45 | | eqid 2737 |
. . . 4
⊢ ran 𝐺 = ran 𝐺 |
| 46 | 45 | isgrpo 30516 |
. . 3
⊢ (𝐺 ∈ V → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)))) |
| 47 | 44, 46 | syl 17 |
. 2
⊢ (𝜑 → (𝐺 ∈ GrpOp ↔ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ ran 𝐺∀𝑥 ∈ ran 𝐺((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ ran 𝐺(𝑦𝐺𝑥) = 𝑢)))) |
| 48 | 41, 47 | mpbird 257 |
1
⊢ (𝜑 → 𝐺 ∈ GrpOp) |