Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovd Structured version   Visualization version   GIF version

Theorem fsovd 43970
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
fsovd (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓   𝑥,𝐴,𝑎,𝑏   𝑦,𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑓   𝑦,𝐵   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovd
StepHypRef Expression
1 fsovd.fs . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
21a1i 11 . 2 (𝜑𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)}))))
3 pweq 4636 . . . . . 6 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
43adantl 481 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 𝑏 = 𝒫 𝐵)
5 simpl 482 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
64, 5oveq12d 7466 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝒫 𝑏m 𝑎) = (𝒫 𝐵m 𝐴))
7 simpr 484 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
8 rabeq 3458 . . . . . 6 (𝑎 = 𝐴 → {𝑥𝑎𝑦 ∈ (𝑓𝑥)} = {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
98adantr 480 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑥𝑎𝑦 ∈ (𝑓𝑥)} = {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
107, 9mpteq12dv 5257 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}))
116, 10mpteq12dv 5257 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
1211adantl 481 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
13 fsovd.a . . 3 (𝜑𝐴𝑉)
1413elexd 3512 . 2 (𝜑𝐴 ∈ V)
15 fsovd.b . . 3 (𝜑𝐵𝑊)
1615elexd 3512 . 2 (𝜑𝐵 ∈ V)
17 ovex 7481 . . . 4 (𝒫 𝐵m 𝐴) ∈ V
1817mptex 7260 . . 3 (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})) ∈ V
1918a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})) ∈ V)
202, 12, 14, 16, 19ovmpod 7602 1 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  𝒫 cpw 4622  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  fsovrfovd  43971  fsovfvd  43972  fsovfd  43974  fsovcnvlem  43975
  Copyright terms: Public domain W3C validator