![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovd | Structured version Visualization version GIF version |
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
fsovd | ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovd.fs | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)})))) |
3 | pweq 4383 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵) | |
4 | 3 | adantl 475 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝒫 𝑏 = 𝒫 𝐵) |
5 | simpl 476 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝑎 = 𝐴) | |
6 | 4, 5 | oveq12d 6928 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝒫 𝑏 ↑𝑚 𝑎) = (𝒫 𝐵 ↑𝑚 𝐴)) |
7 | simpr 479 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) | |
8 | rabeq 3405 | . . . . . 6 ⊢ (𝑎 = 𝐴 → {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) | |
9 | 8 | adantr 474 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) |
10 | 7, 9 | mpteq12dv 4958 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
11 | 6, 10 | mpteq12dv 4958 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
12 | 11 | adantl 475 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)})) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
13 | fsovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | 13 | elexd 3431 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
15 | fsovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
16 | 15 | elexd 3431 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
17 | ovex 6942 | . . . 4 ⊢ (𝒫 𝐵 ↑𝑚 𝐴) ∈ V | |
18 | 17 | mptex 6747 | . . 3 ⊢ (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})) ∈ V |
19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})) ∈ V) |
20 | 2, 12, 14, 16, 19 | ovmpt2d 7053 | 1 ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {crab 3121 Vcvv 3414 𝒫 cpw 4380 ↦ cmpt 4954 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 ↑𝑚 cmap 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 |
This theorem is referenced by: fsovrfovd 39142 fsovfvd 39143 fsovfd 39145 fsovcnvlem 39146 |
Copyright terms: Public domain | W3C validator |