![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgredlemg | Structured version Visualization version GIF version |
Description: Lemma for efgred 19580. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
efgredlemb.p | ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) |
efgredlemb.q | ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) |
efgredlemb.u | ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) |
efgredlemb.v | ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) |
efgredlemb.6 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
efgredlemb.7 | ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
Ref | Expression |
---|---|
efgredlemg | ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . 6 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | fviss 6954 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
3 | 1, 2 | eqsstri 4012 | . . . . 5 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | efgval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
5 | efgval2.m | . . . . . . 7 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
6 | efgval2.t | . . . . . . 7 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
7 | efgred.d | . . . . . . 7 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
8 | efgred.s | . . . . . . 7 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
9 | efgredlem.1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
10 | efgredlem.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
11 | efgredlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
12 | efgredlem.4 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
13 | efgredlem.5 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
14 | efgredlemb.k | . . . . . . 7 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
15 | efgredlemb.l | . . . . . . 7 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
16 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | efgredlemf 19573 | . . . . . 6 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
17 | 16 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
18 | 3, 17 | sselid 3976 | . . . 4 ⊢ (𝜑 → (𝐴‘𝐾) ∈ Word (𝐼 × 2o)) |
19 | lencl 14465 | . . . 4 ⊢ ((𝐴‘𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴‘𝐾)) ∈ ℕ0) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈ ℕ0) |
21 | 20 | nn0cnd 12516 | . 2 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈ ℂ) |
22 | 16 | simprd 496 | . . . . 5 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
23 | 3, 22 | sselid 3976 | . . . 4 ⊢ (𝜑 → (𝐵‘𝐿) ∈ Word (𝐼 × 2o)) |
24 | lencl 14465 | . . . 4 ⊢ ((𝐵‘𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵‘𝐿)) ∈ ℕ0) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈ ℕ0) |
26 | 25 | nn0cnd 12516 | . 2 ⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈ ℂ) |
27 | 2cnd 12272 | . 2 ⊢ (𝜑 → 2 ∈ ℂ) | |
28 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | efgredlema 19572 | . . . . . . 7 ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) |
29 | 28 | simpld 495 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ) |
30 | 1, 4, 5, 6, 7, 8 | efgsdmi 19564 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
31 | 10, 29, 30 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
32 | 14 | fveq2i 6881 | . . . . . . 7 ⊢ (𝐴‘𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1)) |
33 | 32 | fveq2i 6881 | . . . . . 6 ⊢ (𝑇‘(𝐴‘𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
34 | 33 | rneqi 5928 | . . . . 5 ⊢ ran (𝑇‘(𝐴‘𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
35 | 31, 34 | eleqtrrdi 2843 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) |
36 | 1, 4, 5, 6 | efgtlen 19558 | . . . 4 ⊢ (((𝐴‘𝐾) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
37 | 17, 35, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
38 | 28 | simprd 496 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ) |
39 | 1, 4, 5, 6, 7, 8 | efgsdmi 19564 | . . . . . . 7 ⊢ ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
40 | 11, 38, 39 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
41 | 12, 40 | eqeltrd 2832 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
42 | 15 | fveq2i 6881 | . . . . . . 7 ⊢ (𝐵‘𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1)) |
43 | 42 | fveq2i 6881 | . . . . . 6 ⊢ (𝑇‘(𝐵‘𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
44 | 43 | rneqi 5928 | . . . . 5 ⊢ ran (𝑇‘(𝐵‘𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
45 | 41, 44 | eleqtrrdi 2843 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) |
46 | 1, 4, 5, 6 | efgtlen 19558 | . . . 4 ⊢ (((𝐵‘𝐿) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
47 | 22, 45, 46 | syl2anc 584 | . . 3 ⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
48 | 37, 47 | eqtr3d 2773 | . 2 ⊢ (𝜑 → ((♯‘(𝐴‘𝐾)) + 2) = ((♯‘(𝐵‘𝐿)) + 2)) |
49 | 21, 26, 27, 48 | addcan2ad 11402 | 1 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 {crab 3431 ∖ cdif 3941 ∅c0 4318 {csn 4622 〈cop 4628 〈cotp 4630 ∪ ciun 4990 class class class wbr 5141 ↦ cmpt 5224 I cid 5566 × cxp 5667 dom cdm 5669 ran crn 5670 ‘cfv 6532 (class class class)co 7393 ∈ cmpo 7395 1oc1o 8441 2oc2o 8442 0cc0 11092 1c1 11093 + caddc 11095 < clt 11230 − cmin 11426 ℕcn 12194 2c2 12249 ℕ0cn0 12454 ...cfz 13466 ..^cfzo 13609 ♯chash 14272 Word cword 14446 splice csplice 14681 〈“cs2 14774 ~FG cefg 19538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-ot 4631 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-2o 8449 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-fzo 13610 df-hash 14273 df-word 14447 df-concat 14503 df-s1 14528 df-substr 14573 df-pfx 14603 df-splice 14682 df-s2 14781 |
This theorem is referenced by: efgredleme 19575 |
Copyright terms: Public domain | W3C validator |