![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgredlemg | Structured version Visualization version GIF version |
Description: Lemma for efgred 19790. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
efgredlemb.p | ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) |
efgredlemb.q | ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) |
efgredlemb.u | ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) |
efgredlemb.v | ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) |
efgredlemb.6 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
efgredlemb.7 | ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
Ref | Expression |
---|---|
efgredlemg | ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . 6 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | fviss 6999 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
3 | 1, 2 | eqsstri 4043 | . . . . 5 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | efgval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
5 | efgval2.m | . . . . . . 7 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
6 | efgval2.t | . . . . . . 7 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
7 | efgred.d | . . . . . . 7 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
8 | efgred.s | . . . . . . 7 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
9 | efgredlem.1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
10 | efgredlem.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
11 | efgredlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
12 | efgredlem.4 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
13 | efgredlem.5 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
14 | efgredlemb.k | . . . . . . 7 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
15 | efgredlemb.l | . . . . . . 7 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
16 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | efgredlemf 19783 | . . . . . 6 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
17 | 16 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
18 | 3, 17 | sselid 4006 | . . . 4 ⊢ (𝜑 → (𝐴‘𝐾) ∈ Word (𝐼 × 2o)) |
19 | lencl 14581 | . . . 4 ⊢ ((𝐴‘𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴‘𝐾)) ∈ ℕ0) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈ ℕ0) |
21 | 20 | nn0cnd 12615 | . 2 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈ ℂ) |
22 | 16 | simprd 495 | . . . . 5 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
23 | 3, 22 | sselid 4006 | . . . 4 ⊢ (𝜑 → (𝐵‘𝐿) ∈ Word (𝐼 × 2o)) |
24 | lencl 14581 | . . . 4 ⊢ ((𝐵‘𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵‘𝐿)) ∈ ℕ0) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈ ℕ0) |
26 | 25 | nn0cnd 12615 | . 2 ⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈ ℂ) |
27 | 2cnd 12371 | . 2 ⊢ (𝜑 → 2 ∈ ℂ) | |
28 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | efgredlema 19782 | . . . . . . 7 ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) |
29 | 28 | simpld 494 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ) |
30 | 1, 4, 5, 6, 7, 8 | efgsdmi 19774 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
31 | 10, 29, 30 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
32 | 14 | fveq2i 6923 | . . . . . . 7 ⊢ (𝐴‘𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1)) |
33 | 32 | fveq2i 6923 | . . . . . 6 ⊢ (𝑇‘(𝐴‘𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
34 | 33 | rneqi 5962 | . . . . 5 ⊢ ran (𝑇‘(𝐴‘𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
35 | 31, 34 | eleqtrrdi 2855 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) |
36 | 1, 4, 5, 6 | efgtlen 19768 | . . . 4 ⊢ (((𝐴‘𝐾) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
37 | 17, 35, 36 | syl2anc 583 | . . 3 ⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
38 | 28 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ) |
39 | 1, 4, 5, 6, 7, 8 | efgsdmi 19774 | . . . . . . 7 ⊢ ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
40 | 11, 38, 39 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
41 | 12, 40 | eqeltrd 2844 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
42 | 15 | fveq2i 6923 | . . . . . . 7 ⊢ (𝐵‘𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1)) |
43 | 42 | fveq2i 6923 | . . . . . 6 ⊢ (𝑇‘(𝐵‘𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
44 | 43 | rneqi 5962 | . . . . 5 ⊢ ran (𝑇‘(𝐵‘𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
45 | 41, 44 | eleqtrrdi 2855 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) |
46 | 1, 4, 5, 6 | efgtlen 19768 | . . . 4 ⊢ (((𝐵‘𝐿) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
47 | 22, 45, 46 | syl2anc 583 | . . 3 ⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
48 | 37, 47 | eqtr3d 2782 | . 2 ⊢ (𝜑 → ((♯‘(𝐴‘𝐾)) + 2) = ((♯‘(𝐵‘𝐿)) + 2)) |
49 | 21, 26, 27, 48 | addcan2ad 11496 | 1 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∅c0 4352 {csn 4648 〈cop 4654 〈cotp 4656 ∪ ciun 5015 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 × cxp 5698 dom cdm 5700 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1oc1o 8515 2oc2o 8516 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 − cmin 11520 ℕcn 12293 2c2 12348 ℕ0cn0 12553 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 splice csplice 14797 〈“cs2 14890 ~FG cefg 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-s2 14897 |
This theorem is referenced by: efgredleme 19785 |
Copyright terms: Public domain | W3C validator |