MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemg Structured version   Visualization version   GIF version

Theorem efgredlemg 19784
Description: Lemma for efgred 19790. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
Assertion
Ref Expression
efgredlemg (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemg
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6999 . . . . . 6 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4043 . . . . 5 𝑊 ⊆ Word (𝐼 × 2o)
4 efgval.r . . . . . . 7 = ( ~FG𝐼)
5 efgval2.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . 7 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . 7 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . 7 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
9 efgredlem.1 . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
10 efgredlem.2 . . . . . . 7 (𝜑𝐴 ∈ dom 𝑆)
11 efgredlem.3 . . . . . . 7 (𝜑𝐵 ∈ dom 𝑆)
12 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
13 efgredlem.5 . . . . . . 7 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
14 efgredlemb.k . . . . . . 7 𝐾 = (((♯‘𝐴) − 1) − 1)
15 efgredlemb.l . . . . . . 7 𝐿 = (((♯‘𝐵) − 1) − 1)
161, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15efgredlemf 19783 . . . . . 6 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
1716simpld 494 . . . . 5 (𝜑 → (𝐴𝐾) ∈ 𝑊)
183, 17sselid 4006 . . . 4 (𝜑 → (𝐴𝐾) ∈ Word (𝐼 × 2o))
19 lencl 14581 . . . 4 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴𝐾)) ∈ ℕ0)
2018, 19syl 17 . . 3 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℕ0)
2120nn0cnd 12615 . 2 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℂ)
2216simprd 495 . . . . 5 (𝜑 → (𝐵𝐿) ∈ 𝑊)
233, 22sselid 4006 . . . 4 (𝜑 → (𝐵𝐿) ∈ Word (𝐼 × 2o))
24 lencl 14581 . . . 4 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵𝐿)) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℕ0)
2625nn0cnd 12615 . 2 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℂ)
27 2cnd 12371 . 2 (𝜑 → 2 ∈ ℂ)
281, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13efgredlema 19782 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2928simpld 494 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
301, 4, 5, 6, 7, 8efgsdmi 19774 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3110, 29, 30syl2anc 583 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3214fveq2i 6923 . . . . . . 7 (𝐴𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1))
3332fveq2i 6923 . . . . . 6 (𝑇‘(𝐴𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3433rneqi 5962 . . . . 5 ran (𝑇‘(𝐴𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3531, 34eleqtrrdi 2855 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾)))
361, 4, 5, 6efgtlen 19768 . . . 4 (((𝐴𝐾) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3717, 35, 36syl2anc 583 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3828simprd 495 . . . . . . 7 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
391, 4, 5, 6, 7, 8efgsdmi 19774 . . . . . . 7 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4011, 38, 39syl2anc 583 . . . . . 6 (𝜑 → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4112, 40eqeltrd 2844 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4215fveq2i 6923 . . . . . . 7 (𝐵𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1))
4342fveq2i 6923 . . . . . 6 (𝑇‘(𝐵𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4443rneqi 5962 . . . . 5 ran (𝑇‘(𝐵𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4541, 44eleqtrrdi 2855 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿)))
461, 4, 5, 6efgtlen 19768 . . . 4 (((𝐵𝐿) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4722, 45, 46syl2anc 583 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4837, 47eqtr3d 2782 . 2 (𝜑 → ((♯‘(𝐴𝐾)) + 2) = ((♯‘(𝐵𝐿)) + 2))
4921, 26, 27, 48addcan2ad 11496 1 (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  c0 4352  {csn 4648  cop 4654  cotp 4656   ciun 5015   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  cn 12293  2c2 12348  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   splice csplice 14797  ⟨“cs2 14890   ~FG cefg 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-s2 14897
This theorem is referenced by:  efgredleme  19785
  Copyright terms: Public domain W3C validator