MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemg Structured version   Visualization version   GIF version

Theorem efgredlemg 19678
Description: Lemma for efgred 19684. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
Assertion
Ref Expression
efgredlemg (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemg
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6940 . . . . . 6 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3995 . . . . 5 𝑊 ⊆ Word (𝐼 × 2o)
4 efgval.r . . . . . . 7 = ( ~FG𝐼)
5 efgval2.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . 7 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . 7 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . 7 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
9 efgredlem.1 . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
10 efgredlem.2 . . . . . . 7 (𝜑𝐴 ∈ dom 𝑆)
11 efgredlem.3 . . . . . . 7 (𝜑𝐵 ∈ dom 𝑆)
12 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
13 efgredlem.5 . . . . . . 7 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
14 efgredlemb.k . . . . . . 7 𝐾 = (((♯‘𝐴) − 1) − 1)
15 efgredlemb.l . . . . . . 7 𝐿 = (((♯‘𝐵) − 1) − 1)
161, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15efgredlemf 19677 . . . . . 6 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
1716simpld 494 . . . . 5 (𝜑 → (𝐴𝐾) ∈ 𝑊)
183, 17sselid 3946 . . . 4 (𝜑 → (𝐴𝐾) ∈ Word (𝐼 × 2o))
19 lencl 14504 . . . 4 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴𝐾)) ∈ ℕ0)
2018, 19syl 17 . . 3 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℕ0)
2120nn0cnd 12511 . 2 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℂ)
2216simprd 495 . . . . 5 (𝜑 → (𝐵𝐿) ∈ 𝑊)
233, 22sselid 3946 . . . 4 (𝜑 → (𝐵𝐿) ∈ Word (𝐼 × 2o))
24 lencl 14504 . . . 4 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵𝐿)) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℕ0)
2625nn0cnd 12511 . 2 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℂ)
27 2cnd 12265 . 2 (𝜑 → 2 ∈ ℂ)
281, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13efgredlema 19676 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2928simpld 494 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
301, 4, 5, 6, 7, 8efgsdmi 19668 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3110, 29, 30syl2anc 584 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3214fveq2i 6863 . . . . . . 7 (𝐴𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1))
3332fveq2i 6863 . . . . . 6 (𝑇‘(𝐴𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3433rneqi 5903 . . . . 5 ran (𝑇‘(𝐴𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3531, 34eleqtrrdi 2840 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾)))
361, 4, 5, 6efgtlen 19662 . . . 4 (((𝐴𝐾) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3717, 35, 36syl2anc 584 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3828simprd 495 . . . . . . 7 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
391, 4, 5, 6, 7, 8efgsdmi 19668 . . . . . . 7 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4011, 38, 39syl2anc 584 . . . . . 6 (𝜑 → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4112, 40eqeltrd 2829 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4215fveq2i 6863 . . . . . . 7 (𝐵𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1))
4342fveq2i 6863 . . . . . 6 (𝑇‘(𝐵𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4443rneqi 5903 . . . . 5 ran (𝑇‘(𝐵𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4541, 44eleqtrrdi 2840 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿)))
461, 4, 5, 6efgtlen 19662 . . . 4 (((𝐵𝐿) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4722, 45, 46syl2anc 584 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4837, 47eqtr3d 2767 . 2 (𝜑 → ((♯‘(𝐴𝐾)) + 2) = ((♯‘(𝐵𝐿)) + 2))
4921, 26, 27, 48addcan2ad 11386 1 (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3913  c0 4298  {csn 4591  cop 4597  cotp 4599   ciun 4957   class class class wbr 5109  cmpt 5190   I cid 5534   × cxp 5638  dom cdm 5640  ran crn 5641  cfv 6513  (class class class)co 7389  cmpo 7391  1oc1o 8429  2oc2o 8430  0cc0 11074  1c1 11075   + caddc 11077   < clt 11214  cmin 11411  cn 12187  2c2 12242  0cn0 12448  ...cfz 13474  ..^cfzo 13621  chash 14301  Word cword 14484   splice csplice 14720  ⟨“cs2 14813   ~FG cefg 19642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-substr 14612  df-pfx 14642  df-splice 14721  df-s2 14820
This theorem is referenced by:  efgredleme  19679
  Copyright terms: Public domain W3C validator