MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemg Structured version   Visualization version   GIF version

Theorem efgredlemg 19524
Description: Lemma for efgred 19530. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
Assertion
Ref Expression
efgredlemg (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemg
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6918 . . . . . 6 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3978 . . . . 5 𝑊 ⊆ Word (𝐼 × 2o)
4 efgval.r . . . . . . 7 = ( ~FG𝐼)
5 efgval2.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . 7 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . 7 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . 7 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
9 efgredlem.1 . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
10 efgredlem.2 . . . . . . 7 (𝜑𝐴 ∈ dom 𝑆)
11 efgredlem.3 . . . . . . 7 (𝜑𝐵 ∈ dom 𝑆)
12 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
13 efgredlem.5 . . . . . . 7 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
14 efgredlemb.k . . . . . . 7 𝐾 = (((♯‘𝐴) − 1) − 1)
15 efgredlemb.l . . . . . . 7 𝐿 = (((♯‘𝐵) − 1) − 1)
161, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15efgredlemf 19523 . . . . . 6 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
1716simpld 495 . . . . 5 (𝜑 → (𝐴𝐾) ∈ 𝑊)
183, 17sselid 3942 . . . 4 (𝜑 → (𝐴𝐾) ∈ Word (𝐼 × 2o))
19 lencl 14421 . . . 4 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴𝐾)) ∈ ℕ0)
2018, 19syl 17 . . 3 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℕ0)
2120nn0cnd 12475 . 2 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℂ)
2216simprd 496 . . . . 5 (𝜑 → (𝐵𝐿) ∈ 𝑊)
233, 22sselid 3942 . . . 4 (𝜑 → (𝐵𝐿) ∈ Word (𝐼 × 2o))
24 lencl 14421 . . . 4 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵𝐿)) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℕ0)
2625nn0cnd 12475 . 2 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℂ)
27 2cnd 12231 . 2 (𝜑 → 2 ∈ ℂ)
281, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13efgredlema 19522 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2928simpld 495 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
301, 4, 5, 6, 7, 8efgsdmi 19514 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3110, 29, 30syl2anc 584 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3214fveq2i 6845 . . . . . . 7 (𝐴𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1))
3332fveq2i 6845 . . . . . 6 (𝑇‘(𝐴𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3433rneqi 5892 . . . . 5 ran (𝑇‘(𝐴𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3531, 34eleqtrrdi 2849 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾)))
361, 4, 5, 6efgtlen 19508 . . . 4 (((𝐴𝐾) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3717, 35, 36syl2anc 584 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3828simprd 496 . . . . . . 7 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
391, 4, 5, 6, 7, 8efgsdmi 19514 . . . . . . 7 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4011, 38, 39syl2anc 584 . . . . . 6 (𝜑 → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4112, 40eqeltrd 2838 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4215fveq2i 6845 . . . . . . 7 (𝐵𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1))
4342fveq2i 6845 . . . . . 6 (𝑇‘(𝐵𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4443rneqi 5892 . . . . 5 ran (𝑇‘(𝐵𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4541, 44eleqtrrdi 2849 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿)))
461, 4, 5, 6efgtlen 19508 . . . 4 (((𝐵𝐿) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4722, 45, 46syl2anc 584 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4837, 47eqtr3d 2778 . 2 (𝜑 → ((♯‘(𝐴𝐾)) + 2) = ((♯‘(𝐵𝐿)) + 2))
4921, 26, 27, 48addcan2ad 11361 1 (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  cdif 3907  c0 4282  {csn 4586  cop 4592  cotp 4594   ciun 4954   class class class wbr 5105  cmpt 5188   I cid 5530   × cxp 5631  dom cdm 5633  ran crn 5634  cfv 6496  (class class class)co 7357  cmpo 7359  1oc1o 8405  2oc2o 8406  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cmin 11385  cn 12153  2c2 12208  0cn0 12413  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402   splice csplice 14637  ⟨“cs2 14730   ~FG cefg 19488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-splice 14638  df-s2 14737
This theorem is referenced by:  efgredleme  19525
  Copyright terms: Public domain W3C validator