MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemg Structured version   Visualization version   GIF version

Theorem efgredlemg 19656
Description: Lemma for efgred 19662. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
Assertion
Ref Expression
efgredlemg (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemg
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6920 . . . . . 6 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3990 . . . . 5 𝑊 ⊆ Word (𝐼 × 2o)
4 efgval.r . . . . . . 7 = ( ~FG𝐼)
5 efgval2.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6 efgval2.t . . . . . . 7 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . 7 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . 7 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
9 efgredlem.1 . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
10 efgredlem.2 . . . . . . 7 (𝜑𝐴 ∈ dom 𝑆)
11 efgredlem.3 . . . . . . 7 (𝜑𝐵 ∈ dom 𝑆)
12 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
13 efgredlem.5 . . . . . . 7 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
14 efgredlemb.k . . . . . . 7 𝐾 = (((♯‘𝐴) − 1) − 1)
15 efgredlemb.l . . . . . . 7 𝐿 = (((♯‘𝐵) − 1) − 1)
161, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15efgredlemf 19655 . . . . . 6 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
1716simpld 494 . . . . 5 (𝜑 → (𝐴𝐾) ∈ 𝑊)
183, 17sselid 3941 . . . 4 (𝜑 → (𝐴𝐾) ∈ Word (𝐼 × 2o))
19 lencl 14474 . . . 4 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴𝐾)) ∈ ℕ0)
2018, 19syl 17 . . 3 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℕ0)
2120nn0cnd 12481 . 2 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℂ)
2216simprd 495 . . . . 5 (𝜑 → (𝐵𝐿) ∈ 𝑊)
233, 22sselid 3941 . . . 4 (𝜑 → (𝐵𝐿) ∈ Word (𝐼 × 2o))
24 lencl 14474 . . . 4 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵𝐿)) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℕ0)
2625nn0cnd 12481 . 2 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℂ)
27 2cnd 12240 . 2 (𝜑 → 2 ∈ ℂ)
281, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13efgredlema 19654 . . . . . . 7 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2928simpld 494 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
301, 4, 5, 6, 7, 8efgsdmi 19646 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3110, 29, 30syl2anc 584 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
3214fveq2i 6843 . . . . . . 7 (𝐴𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1))
3332fveq2i 6843 . . . . . 6 (𝑇‘(𝐴𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3433rneqi 5890 . . . . 5 ran (𝑇‘(𝐴𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))
3531, 34eleqtrrdi 2839 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾)))
361, 4, 5, 6efgtlen 19640 . . . 4 (((𝐴𝐾) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3717, 35, 36syl2anc 584 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐴𝐾)) + 2))
3828simprd 495 . . . . . . 7 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
391, 4, 5, 6, 7, 8efgsdmi 19646 . . . . . . 7 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4011, 38, 39syl2anc 584 . . . . . 6 (𝜑 → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4112, 40eqeltrd 2828 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
4215fveq2i 6843 . . . . . . 7 (𝐵𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1))
4342fveq2i 6843 . . . . . 6 (𝑇‘(𝐵𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4443rneqi 5890 . . . . 5 ran (𝑇‘(𝐵𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))
4541, 44eleqtrrdi 2839 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿)))
461, 4, 5, 6efgtlen 19640 . . . 4 (((𝐵𝐿) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4722, 45, 46syl2anc 584 . . 3 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐵𝐿)) + 2))
4837, 47eqtr3d 2766 . 2 (𝜑 → ((♯‘(𝐴𝐾)) + 2) = ((♯‘(𝐵𝐿)) + 2))
4921, 26, 27, 48addcan2ad 11356 1 (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cdif 3908  c0 4292  {csn 4585  cop 4591  cotp 4593   ciun 4951   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  dom cdm 5631  ran crn 5632  cfv 6499  (class class class)co 7369  cmpo 7371  1oc1o 8404  2oc2o 8405  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  cn 12162  2c2 12217  0cn0 12418  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454   splice csplice 14690  ⟨“cs2 14783   ~FG cefg 19620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-s2 14790
This theorem is referenced by:  efgredleme  19657
  Copyright terms: Public domain W3C validator