Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . 6
β’ π = ( I βWord (πΌ Γ
2o)) |
2 | | fviss 6965 |
. . . . . 6
β’ ( I
βWord (πΌ Γ
2o)) β Word (πΌ Γ 2o) |
3 | 1, 2 | eqsstri 4015 |
. . . . 5
β’ π β Word (πΌ Γ 2o) |
4 | | efgval.r |
. . . . . . 7
β’ βΌ = (
~FG βπΌ) |
5 | | efgval2.m |
. . . . . . 7
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
6 | | efgval2.t |
. . . . . . 7
β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
7 | | efgred.d |
. . . . . . 7
β’ π· = (π β βͺ
π₯ β π ran (πβπ₯)) |
8 | | efgred.s |
. . . . . . 7
β’ π = (π β {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
9 | | efgredlem.1 |
. . . . . . 7
β’ (π β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΄)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
10 | | efgredlem.2 |
. . . . . . 7
β’ (π β π΄ β dom π) |
11 | | efgredlem.3 |
. . . . . . 7
β’ (π β π΅ β dom π) |
12 | | efgredlem.4 |
. . . . . . 7
β’ (π β (πβπ΄) = (πβπ΅)) |
13 | | efgredlem.5 |
. . . . . . 7
β’ (π β Β¬ (π΄β0) = (π΅β0)) |
14 | | efgredlemb.k |
. . . . . . 7
β’ πΎ = (((β―βπ΄) β 1) β
1) |
15 | | efgredlemb.l |
. . . . . . 7
β’ πΏ = (((β―βπ΅) β 1) β
1) |
16 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | efgredlemf 19603 |
. . . . . 6
β’ (π β ((π΄βπΎ) β π β§ (π΅βπΏ) β π)) |
17 | 16 | simpld 495 |
. . . . 5
β’ (π β (π΄βπΎ) β π) |
18 | 3, 17 | sselid 3979 |
. . . 4
β’ (π β (π΄βπΎ) β Word (πΌ Γ 2o)) |
19 | | lencl 14479 |
. . . 4
β’ ((π΄βπΎ) β Word (πΌ Γ 2o) β
(β―β(π΄βπΎ)) β
β0) |
20 | 18, 19 | syl 17 |
. . 3
β’ (π β (β―β(π΄βπΎ)) β
β0) |
21 | 20 | nn0cnd 12530 |
. 2
β’ (π β (β―β(π΄βπΎ)) β β) |
22 | 16 | simprd 496 |
. . . . 5
β’ (π β (π΅βπΏ) β π) |
23 | 3, 22 | sselid 3979 |
. . . 4
β’ (π β (π΅βπΏ) β Word (πΌ Γ 2o)) |
24 | | lencl 14479 |
. . . 4
β’ ((π΅βπΏ) β Word (πΌ Γ 2o) β
(β―β(π΅βπΏ)) β
β0) |
25 | 23, 24 | syl 17 |
. . 3
β’ (π β (β―β(π΅βπΏ)) β
β0) |
26 | 25 | nn0cnd 12530 |
. 2
β’ (π β (β―β(π΅βπΏ)) β β) |
27 | | 2cnd 12286 |
. 2
β’ (π β 2 β
β) |
28 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | efgredlema 19602 |
. . . . . . 7
β’ (π β (((β―βπ΄) β 1) β β
β§ ((β―βπ΅)
β 1) β β)) |
29 | 28 | simpld 495 |
. . . . . 6
β’ (π β ((β―βπ΄) β 1) β
β) |
30 | 1, 4, 5, 6, 7, 8 | efgsdmi 19594 |
. . . . . 6
β’ ((π΄ β dom π β§ ((β―βπ΄) β 1) β β) β (πβπ΄) β ran (πβ(π΄β(((β―βπ΄) β 1) β 1)))) |
31 | 10, 29, 30 | syl2anc 584 |
. . . . 5
β’ (π β (πβπ΄) β ran (πβ(π΄β(((β―βπ΄) β 1) β 1)))) |
32 | 14 | fveq2i 6891 |
. . . . . . 7
β’ (π΄βπΎ) = (π΄β(((β―βπ΄) β 1) β 1)) |
33 | 32 | fveq2i 6891 |
. . . . . 6
β’ (πβ(π΄βπΎ)) = (πβ(π΄β(((β―βπ΄) β 1) β 1))) |
34 | 33 | rneqi 5934 |
. . . . 5
β’ ran
(πβ(π΄βπΎ)) = ran (πβ(π΄β(((β―βπ΄) β 1) β 1))) |
35 | 31, 34 | eleqtrrdi 2844 |
. . . 4
β’ (π β (πβπ΄) β ran (πβ(π΄βπΎ))) |
36 | 1, 4, 5, 6 | efgtlen 19588 |
. . . 4
β’ (((π΄βπΎ) β π β§ (πβπ΄) β ran (πβ(π΄βπΎ))) β (β―β(πβπ΄)) = ((β―β(π΄βπΎ)) + 2)) |
37 | 17, 35, 36 | syl2anc 584 |
. . 3
β’ (π β (β―β(πβπ΄)) = ((β―β(π΄βπΎ)) + 2)) |
38 | 28 | simprd 496 |
. . . . . . 7
β’ (π β ((β―βπ΅) β 1) β
β) |
39 | 1, 4, 5, 6, 7, 8 | efgsdmi 19594 |
. . . . . . 7
β’ ((π΅ β dom π β§ ((β―βπ΅) β 1) β β) β (πβπ΅) β ran (πβ(π΅β(((β―βπ΅) β 1) β 1)))) |
40 | 11, 38, 39 | syl2anc 584 |
. . . . . 6
β’ (π β (πβπ΅) β ran (πβ(π΅β(((β―βπ΅) β 1) β 1)))) |
41 | 12, 40 | eqeltrd 2833 |
. . . . 5
β’ (π β (πβπ΄) β ran (πβ(π΅β(((β―βπ΅) β 1) β 1)))) |
42 | 15 | fveq2i 6891 |
. . . . . . 7
β’ (π΅βπΏ) = (π΅β(((β―βπ΅) β 1) β 1)) |
43 | 42 | fveq2i 6891 |
. . . . . 6
β’ (πβ(π΅βπΏ)) = (πβ(π΅β(((β―βπ΅) β 1) β 1))) |
44 | 43 | rneqi 5934 |
. . . . 5
β’ ran
(πβ(π΅βπΏ)) = ran (πβ(π΅β(((β―βπ΅) β 1) β 1))) |
45 | 41, 44 | eleqtrrdi 2844 |
. . . 4
β’ (π β (πβπ΄) β ran (πβ(π΅βπΏ))) |
46 | 1, 4, 5, 6 | efgtlen 19588 |
. . . 4
β’ (((π΅βπΏ) β π β§ (πβπ΄) β ran (πβ(π΅βπΏ))) β (β―β(πβπ΄)) = ((β―β(π΅βπΏ)) + 2)) |
47 | 22, 45, 46 | syl2anc 584 |
. . 3
β’ (π β (β―β(πβπ΄)) = ((β―β(π΅βπΏ)) + 2)) |
48 | 37, 47 | eqtr3d 2774 |
. 2
β’ (π β ((β―β(π΄βπΎ)) + 2) = ((β―β(π΅βπΏ)) + 2)) |
49 | 21, 26, 27, 48 | addcan2ad 11416 |
1
β’ (π β (β―β(π΄βπΎ)) = (β―β(π΅βπΏ))) |