| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgredlemg | Structured version Visualization version GIF version | ||
| Description: Lemma for efgred 19767. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
| efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
| efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
| efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
| efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
| efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
| efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
| efgredlemb.p | ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) |
| efgredlemb.q | ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) |
| efgredlemb.u | ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) |
| efgredlemb.v | ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) |
| efgredlemb.6 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
| efgredlemb.7 | ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
| Ref | Expression |
|---|---|
| efgredlemg | ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . . . 6 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | fviss 6985 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
| 3 | 1, 2 | eqsstri 4029 | . . . . 5 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 4 | efgval.r | . . . . . . 7 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 5 | efgval2.m | . . . . . . 7 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 6 | efgval2.t | . . . . . . 7 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 7 | efgred.d | . . . . . . 7 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 8 | efgred.s | . . . . . . 7 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 9 | efgredlem.1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
| 10 | efgredlem.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
| 11 | efgredlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
| 12 | efgredlem.4 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
| 13 | efgredlem.5 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
| 14 | efgredlemb.k | . . . . . . 7 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
| 15 | efgredlemb.l | . . . . . . 7 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
| 16 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | efgredlemf 19760 | . . . . . 6 ⊢ (𝜑 → ((𝐴‘𝐾) ∈ 𝑊 ∧ (𝐵‘𝐿) ∈ 𝑊)) |
| 17 | 16 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝐴‘𝐾) ∈ 𝑊) |
| 18 | 3, 17 | sselid 3980 | . . . 4 ⊢ (𝜑 → (𝐴‘𝐾) ∈ Word (𝐼 × 2o)) |
| 19 | lencl 14572 | . . . 4 ⊢ ((𝐴‘𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴‘𝐾)) ∈ ℕ0) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈ ℕ0) |
| 21 | 20 | nn0cnd 12591 | . 2 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) ∈ ℂ) |
| 22 | 16 | simprd 495 | . . . . 5 ⊢ (𝜑 → (𝐵‘𝐿) ∈ 𝑊) |
| 23 | 3, 22 | sselid 3980 | . . . 4 ⊢ (𝜑 → (𝐵‘𝐿) ∈ Word (𝐼 × 2o)) |
| 24 | lencl 14572 | . . . 4 ⊢ ((𝐵‘𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵‘𝐿)) ∈ ℕ0) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈ ℕ0) |
| 26 | 25 | nn0cnd 12591 | . 2 ⊢ (𝜑 → (♯‘(𝐵‘𝐿)) ∈ ℂ) |
| 27 | 2cnd 12345 | . 2 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 28 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | efgredlema 19759 | . . . . . . 7 ⊢ (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ)) |
| 29 | 28 | simpld 494 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ) |
| 30 | 1, 4, 5, 6, 7, 8 | efgsdmi 19751 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
| 31 | 10, 29, 30 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
| 32 | 14 | fveq2i 6908 | . . . . . . 7 ⊢ (𝐴‘𝐾) = (𝐴‘(((♯‘𝐴) − 1) − 1)) |
| 33 | 32 | fveq2i 6908 | . . . . . 6 ⊢ (𝑇‘(𝐴‘𝐾)) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
| 34 | 33 | rneqi 5947 | . . . . 5 ⊢ ran (𝑇‘(𝐴‘𝐾)) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) |
| 35 | 31, 34 | eleqtrrdi 2851 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) |
| 36 | 1, 4, 5, 6 | efgtlen 19745 | . . . 4 ⊢ (((𝐴‘𝐾) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘𝐾))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
| 37 | 17, 35, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐴‘𝐾)) + 2)) |
| 38 | 28 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ) |
| 39 | 1, 4, 5, 6, 7, 8 | efgsdmi 19751 | . . . . . . 7 ⊢ ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
| 40 | 11, 38, 39 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
| 41 | 12, 40 | eqeltrd 2840 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) |
| 42 | 15 | fveq2i 6908 | . . . . . . 7 ⊢ (𝐵‘𝐿) = (𝐵‘(((♯‘𝐵) − 1) − 1)) |
| 43 | 42 | fveq2i 6908 | . . . . . 6 ⊢ (𝑇‘(𝐵‘𝐿)) = (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
| 44 | 43 | rneqi 5947 | . . . . 5 ⊢ ran (𝑇‘(𝐵‘𝐿)) = ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) |
| 45 | 41, 44 | eleqtrrdi 2851 | . . . 4 ⊢ (𝜑 → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) |
| 46 | 1, 4, 5, 6 | efgtlen 19745 | . . . 4 ⊢ (((𝐵‘𝐿) ∈ 𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐵‘𝐿))) → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
| 47 | 22, 45, 46 | syl2anc 584 | . . 3 ⊢ (𝜑 → (♯‘(𝑆‘𝐴)) = ((♯‘(𝐵‘𝐿)) + 2)) |
| 48 | 37, 47 | eqtr3d 2778 | . 2 ⊢ (𝜑 → ((♯‘(𝐴‘𝐾)) + 2) = ((♯‘(𝐵‘𝐿)) + 2)) |
| 49 | 21, 26, 27, 48 | addcan2ad 11468 | 1 ⊢ (𝜑 → (♯‘(𝐴‘𝐾)) = (♯‘(𝐵‘𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 ∖ cdif 3947 ∅c0 4332 {csn 4625 〈cop 4631 〈cotp 4633 ∪ ciun 4990 class class class wbr 5142 ↦ cmpt 5224 I cid 5576 × cxp 5682 dom cdm 5684 ran crn 5685 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 1oc1o 8500 2oc2o 8501 0cc0 11156 1c1 11157 + caddc 11159 < clt 11296 − cmin 11493 ℕcn 12267 2c2 12322 ℕ0cn0 12528 ...cfz 13548 ..^cfzo 13695 ♯chash 14370 Word cword 14553 splice csplice 14788 〈“cs2 14881 ~FG cefg 19725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-ot 4634 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-substr 14680 df-pfx 14710 df-splice 14789 df-s2 14888 |
| This theorem is referenced by: efgredleme 19762 |
| Copyright terms: Public domain | W3C validator |