![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efginvrel1 | Structured version Visualization version GIF version |
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efginvrel1 | ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . . . . . 10 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | fviss 6985 | . . . . . . . . . 10 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
3 | 1, 2 | eqsstri 4029 | . . . . . . . . 9 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | 3 | sseli 3990 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
5 | revcl 14795 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) |
7 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
8 | 7 | efgmf 19745 | . . . . . . 7 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
9 | revco 14869 | . . . . . . 7 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) | |
10 | 6, 8, 9 | sylancl 586 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) |
11 | revrev 14801 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘(reverse‘𝐴)) = 𝐴) | |
12 | 4, 11 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴) |
13 | 12 | coeq2d 5875 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
14 | 10, 13 | eqtr3d 2776 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
15 | 14 | coeq2d 5875 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀 ∘ 𝐴))) |
16 | wrdf 14553 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) | |
17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) |
18 | 17 | ffvelcdmda 7103 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴‘𝑐) ∈ (𝐼 × 2o)) |
19 | 7 | efgmnvl 19746 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
21 | 20 | mpteq2dva 5247 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
22 | 8 | ffvelcdmi 7102 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
24 | fcompt 7152 | . . . . . . 7 ⊢ ((𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) | |
25 | 8, 17, 24 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) |
26 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
27 | 26 | feqmptd 6976 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → 𝑀 = (𝑎 ∈ (𝐼 × 2o) ↦ (𝑀‘𝑎))) |
28 | fveq2 6906 | . . . . . 6 ⊢ (𝑎 = (𝑀‘(𝐴‘𝑐)) → (𝑀‘𝑎) = (𝑀‘(𝑀‘(𝐴‘𝑐)))) | |
29 | 23, 25, 27, 28 | fmptco 7148 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐))))) |
30 | 17 | feqmptd 6976 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
31 | 21, 29, 30 | 3eqtr4d 2784 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = 𝐴) |
32 | 15, 31 | eqtrd 2774 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴) |
33 | 32 | oveq2d 7446 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴)) |
34 | wrdco 14866 | . . . . 5 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) | |
35 | 6, 8, 34 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) |
36 | 1 | efgrcl 19747 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
37 | 36 | simprd 495 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
38 | 35, 37 | eleqtrrd 2841 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
39 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
40 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
41 | 1, 39, 7, 40 | efginvrel2 19759 | . . 3 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
42 | 38, 41 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
43 | 33, 42 | eqbrtrrd 5171 | 1 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∖ cdif 3959 ∅c0 4338 〈cop 4636 〈cotp 4638 class class class wbr 5147 ↦ cmpt 5230 I cid 5581 × cxp 5686 ∘ ccom 5692 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 1oc1o 8497 2oc2o 8498 0cc0 11152 ...cfz 13543 ..^cfzo 13690 ♯chash 14365 Word cword 14548 ++ cconcat 14604 splice csplice 14783 reversecreverse 14792 〈“cs2 14876 ~FG cefg 19738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-ot 4639 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-ec 8745 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-xnn0 12597 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-hash 14366 df-word 14549 df-lsw 14597 df-concat 14605 df-s1 14630 df-substr 14675 df-pfx 14705 df-splice 14784 df-reverse 14793 df-s2 14883 df-efg 19741 |
This theorem is referenced by: frgp0 19792 |
Copyright terms: Public domain | W3C validator |