![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efginvrel1 | Structured version Visualization version GIF version |
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efginvrel1 | ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . . . . . 10 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | fviss 6999 | . . . . . . . . . 10 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
3 | 1, 2 | eqsstri 4043 | . . . . . . . . 9 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | 3 | sseli 4004 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
5 | revcl 14809 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) |
7 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
8 | 7 | efgmf 19755 | . . . . . . 7 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
9 | revco 14883 | . . . . . . 7 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) | |
10 | 6, 8, 9 | sylancl 585 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) |
11 | revrev 14815 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘(reverse‘𝐴)) = 𝐴) | |
12 | 4, 11 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴) |
13 | 12 | coeq2d 5887 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
14 | 10, 13 | eqtr3d 2782 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
15 | 14 | coeq2d 5887 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀 ∘ 𝐴))) |
16 | wrdf 14567 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) | |
17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) |
18 | 17 | ffvelcdmda 7118 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴‘𝑐) ∈ (𝐼 × 2o)) |
19 | 7 | efgmnvl 19756 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
21 | 20 | mpteq2dva 5266 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
22 | 8 | ffvelcdmi 7117 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
24 | fcompt 7167 | . . . . . . 7 ⊢ ((𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) | |
25 | 8, 17, 24 | sylancr 586 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) |
26 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
27 | 26 | feqmptd 6990 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → 𝑀 = (𝑎 ∈ (𝐼 × 2o) ↦ (𝑀‘𝑎))) |
28 | fveq2 6920 | . . . . . 6 ⊢ (𝑎 = (𝑀‘(𝐴‘𝑐)) → (𝑀‘𝑎) = (𝑀‘(𝑀‘(𝐴‘𝑐)))) | |
29 | 23, 25, 27, 28 | fmptco 7163 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐))))) |
30 | 17 | feqmptd 6990 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
31 | 21, 29, 30 | 3eqtr4d 2790 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = 𝐴) |
32 | 15, 31 | eqtrd 2780 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴) |
33 | 32 | oveq2d 7464 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴)) |
34 | wrdco 14880 | . . . . 5 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) | |
35 | 6, 8, 34 | sylancl 585 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) |
36 | 1 | efgrcl 19757 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
37 | 36 | simprd 495 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
38 | 35, 37 | eleqtrrd 2847 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
39 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
40 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
41 | 1, 39, 7, 40 | efginvrel2 19769 | . . 3 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
42 | 38, 41 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
43 | 33, 42 | eqbrtrrd 5190 | 1 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 〈cop 4654 〈cotp 4656 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 × cxp 5698 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1oc1o 8515 2oc2o 8516 0cc0 11184 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 ++ cconcat 14618 splice csplice 14797 reversecreverse 14806 〈“cs2 14890 ~FG cefg 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-efg 19751 |
This theorem is referenced by: frgp0 19802 |
Copyright terms: Public domain | W3C validator |