MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel1 Structured version   Visualization version   GIF version

Theorem efginvrel1 19640
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efginvrel1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efginvrel1
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6899 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3976 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3925 . . . . . . . 8 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14668 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 19625 . . . . . . 7 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 revco 14741 . . . . . . 7 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
106, 8, 9sylancl 586 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
11 revrev 14674 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘(reverse‘𝐴)) = 𝐴)
124, 11syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴)
1312coeq2d 5801 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀𝐴))
1410, 13eqtr3d 2768 . . . . 5 (𝐴𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀𝐴))
1514coeq2d 5801 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀𝐴)))
16 wrdf 14425 . . . . . . . . 9 (𝐴 ∈ Word (𝐼 × 2o) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o))
174, 16syl 17 . . . . . . . 8 (𝐴𝑊𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o))
1817ffvelcdmda 7017 . . . . . . 7 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴𝑐) ∈ (𝐼 × 2o))
197efgmnvl 19626 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2018, 19syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2120mpteq2dva 5182 . . . . 5 (𝐴𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
228ffvelcdmi 7016 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2o))
2318, 22syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2o))
24 fcompt 7066 . . . . . . 7 ((𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
258, 17, 24sylancr 587 . . . . . 6 (𝐴𝑊 → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
268a1i 11 . . . . . . 7 (𝐴𝑊𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
2726feqmptd 6890 . . . . . 6 (𝐴𝑊𝑀 = (𝑎 ∈ (𝐼 × 2o) ↦ (𝑀𝑎)))
28 fveq2 6822 . . . . . 6 (𝑎 = (𝑀‘(𝐴𝑐)) → (𝑀𝑎) = (𝑀‘(𝑀‘(𝐴𝑐))))
2923, 25, 27, 28fmptco 7062 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))))
3017feqmptd 6890 . . . . 5 (𝐴𝑊𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
3121, 29, 303eqtr4d 2776 . . . 4 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = 𝐴)
3215, 31eqtrd 2766 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴)
3332oveq2d 7362 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴))
34 wrdco 14738 . . . . 5 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
356, 8, 34sylancl 586 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
361efgrcl 19627 . . . . 5 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3736simprd 495 . . . 4 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
3835, 37eleqtrrd 2834 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
39 efgval.r . . . 4 = ( ~FG𝐼)
40 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
411, 39, 7, 40efginvrel2 19639 . . 3 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4238, 41syl 17 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4333, 42eqbrtrrd 5113 1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  c0 4280  cop 4579  cotp 4581   class class class wbr 5089  cmpt 5170   I cid 5508   × cxp 5612  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  0cc0 11006  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420   ++ cconcat 14477   splice csplice 14656  reversecreverse 14665  ⟨“cs2 14748   ~FG cefg 19618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-efg 19621
This theorem is referenced by:  frgp0  19672
  Copyright terms: Public domain W3C validator