![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efginvrel1 | Structured version Visualization version GIF version |
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efginvrel1 | ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . . . . . 10 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | fviss 6954 | . . . . . . . . . 10 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
3 | 1, 2 | eqsstri 4012 | . . . . . . . . 9 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | 3 | sseli 3974 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
5 | revcl 14693 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) |
7 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
8 | 7 | efgmf 19545 | . . . . . . 7 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
9 | revco 14767 | . . . . . . 7 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) | |
10 | 6, 8, 9 | sylancl 586 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) |
11 | revrev 14699 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘(reverse‘𝐴)) = 𝐴) | |
12 | 4, 11 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴) |
13 | 12 | coeq2d 5854 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
14 | 10, 13 | eqtr3d 2773 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
15 | 14 | coeq2d 5854 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀 ∘ 𝐴))) |
16 | wrdf 14451 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) | |
17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) |
18 | 17 | ffvelcdmda 7071 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴‘𝑐) ∈ (𝐼 × 2o)) |
19 | 7 | efgmnvl 19546 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
21 | 20 | mpteq2dva 5241 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
22 | 8 | ffvelcdmi 7070 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
24 | fcompt 7115 | . . . . . . 7 ⊢ ((𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) | |
25 | 8, 17, 24 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) |
26 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
27 | 26 | feqmptd 6946 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → 𝑀 = (𝑎 ∈ (𝐼 × 2o) ↦ (𝑀‘𝑎))) |
28 | fveq2 6878 | . . . . . 6 ⊢ (𝑎 = (𝑀‘(𝐴‘𝑐)) → (𝑀‘𝑎) = (𝑀‘(𝑀‘(𝐴‘𝑐)))) | |
29 | 23, 25, 27, 28 | fmptco 7111 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐))))) |
30 | 17 | feqmptd 6946 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
31 | 21, 29, 30 | 3eqtr4d 2781 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = 𝐴) |
32 | 15, 31 | eqtrd 2771 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴) |
33 | 32 | oveq2d 7409 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴)) |
34 | wrdco 14764 | . . . . 5 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) | |
35 | 6, 8, 34 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) |
36 | 1 | efgrcl 19547 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
37 | 36 | simprd 496 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
38 | 35, 37 | eleqtrrd 2835 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
39 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
40 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
41 | 1, 39, 7, 40 | efginvrel2 19559 | . . 3 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
42 | 38, 41 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
43 | 33, 42 | eqbrtrrd 5165 | 1 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3473 ∖ cdif 3941 ∅c0 4318 〈cop 4628 〈cotp 4630 class class class wbr 5141 ↦ cmpt 5224 I cid 5566 × cxp 5667 ∘ ccom 5673 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 ∈ cmpo 7395 1oc1o 8441 2oc2o 8442 0cc0 11092 ...cfz 13466 ..^cfzo 13609 ♯chash 14272 Word cword 14446 ++ cconcat 14502 splice csplice 14681 reversecreverse 14690 〈“cs2 14774 ~FG cefg 19538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-ot 4631 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-2o 8449 df-er 8686 df-ec 8688 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-xnn0 12527 df-z 12541 df-uz 12805 df-fz 13467 df-fzo 13610 df-hash 14273 df-word 14447 df-lsw 14495 df-concat 14503 df-s1 14528 df-substr 14573 df-pfx 14603 df-splice 14682 df-reverse 14691 df-s2 14781 df-efg 19541 |
This theorem is referenced by: frgp0 19592 |
Copyright terms: Public domain | W3C validator |