MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel1 Structured version   Visualization version   GIF version

Theorem efginvrel1 19642
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efginvrel1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efginvrel1
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6920 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 3990 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3939 . . . . . . . 8 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14702 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 19627 . . . . . . 7 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 revco 14776 . . . . . . 7 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
106, 8, 9sylancl 586 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
11 revrev 14708 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘(reverse‘𝐴)) = 𝐴)
124, 11syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴)
1312coeq2d 5816 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀𝐴))
1410, 13eqtr3d 2766 . . . . 5 (𝐴𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀𝐴))
1514coeq2d 5816 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀𝐴)))
16 wrdf 14459 . . . . . . . . 9 (𝐴 ∈ Word (𝐼 × 2o) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o))
174, 16syl 17 . . . . . . . 8 (𝐴𝑊𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o))
1817ffvelcdmda 7038 . . . . . . 7 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴𝑐) ∈ (𝐼 × 2o))
197efgmnvl 19628 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2018, 19syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2120mpteq2dva 5195 . . . . 5 (𝐴𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
228ffvelcdmi 7037 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2o))
2318, 22syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2o))
24 fcompt 7087 . . . . . . 7 ((𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
258, 17, 24sylancr 587 . . . . . 6 (𝐴𝑊 → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
268a1i 11 . . . . . . 7 (𝐴𝑊𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
2726feqmptd 6911 . . . . . 6 (𝐴𝑊𝑀 = (𝑎 ∈ (𝐼 × 2o) ↦ (𝑀𝑎)))
28 fveq2 6840 . . . . . 6 (𝑎 = (𝑀‘(𝐴𝑐)) → (𝑀𝑎) = (𝑀‘(𝑀‘(𝐴𝑐))))
2923, 25, 27, 28fmptco 7083 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))))
3017feqmptd 6911 . . . . 5 (𝐴𝑊𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
3121, 29, 303eqtr4d 2774 . . . 4 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = 𝐴)
3215, 31eqtrd 2764 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴)
3332oveq2d 7385 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴))
34 wrdco 14773 . . . . 5 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
356, 8, 34sylancl 586 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
361efgrcl 19629 . . . . 5 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3736simprd 495 . . . 4 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
3835, 37eleqtrrd 2831 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
39 efgval.r . . . 4 = ( ~FG𝐼)
40 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
411, 39, 7, 40efginvrel2 19641 . . 3 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4238, 41syl 17 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4333, 42eqbrtrrd 5126 1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  c0 4292  cop 4591  cotp 4593   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1oc1o 8404  2oc2o 8405  0cc0 11044  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454   ++ cconcat 14511   splice csplice 14690  reversecreverse 14699  ⟨“cs2 14783   ~FG cefg 19620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-efg 19623
This theorem is referenced by:  frgp0  19674
  Copyright terms: Public domain W3C validator