| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efginvrel1 | Structured version Visualization version GIF version | ||
| Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| Ref | Expression |
|---|---|
| efginvrel1 | ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . . . . . . . 10 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | fviss 6938 | . . . . . . . . . 10 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
| 3 | 1, 2 | eqsstri 3993 | . . . . . . . . 9 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 4 | 3 | sseli 3942 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2o)) |
| 5 | revcl 14726 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o)) |
| 7 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 8 | 7 | efgmf 19643 | . . . . . . 7 ⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) |
| 9 | revco 14800 | . . . . . . 7 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) | |
| 10 | 6, 8, 9 | sylancl 586 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) |
| 11 | revrev 14732 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘(reverse‘𝐴)) = 𝐴) | |
| 12 | 4, 11 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴) |
| 13 | 12 | coeq2d 5826 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
| 14 | 10, 13 | eqtr3d 2766 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
| 15 | 14 | coeq2d 5826 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀 ∘ 𝐴))) |
| 16 | wrdf 14483 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word (𝐼 × 2o) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) | |
| 17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) |
| 18 | 17 | ffvelcdmda 7056 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴‘𝑐) ∈ (𝐼 × 2o)) |
| 19 | 7 | efgmnvl 19644 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
| 20 | 18, 19 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
| 21 | 20 | mpteq2dva 5200 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
| 22 | 8 | ffvelcdmi 7055 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
| 23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2o)) |
| 24 | fcompt 7105 | . . . . . . 7 ⊢ ((𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) | |
| 25 | 8, 17, 24 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) |
| 26 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) |
| 27 | 26 | feqmptd 6929 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → 𝑀 = (𝑎 ∈ (𝐼 × 2o) ↦ (𝑀‘𝑎))) |
| 28 | fveq2 6858 | . . . . . 6 ⊢ (𝑎 = (𝑀‘(𝐴‘𝑐)) → (𝑀‘𝑎) = (𝑀‘(𝑀‘(𝐴‘𝑐)))) | |
| 29 | 23, 25, 27, 28 | fmptco 7101 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐))))) |
| 30 | 17 | feqmptd 6929 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
| 31 | 21, 29, 30 | 3eqtr4d 2774 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = 𝐴) |
| 32 | 15, 31 | eqtrd 2764 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴) |
| 33 | 32 | oveq2d 7403 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴)) |
| 34 | wrdco 14797 | . . . . 5 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) | |
| 35 | 6, 8, 34 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o)) |
| 36 | 1 | efgrcl 19645 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 37 | 36 | simprd 495 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
| 38 | 35, 37 | eleqtrrd 2831 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
| 39 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 40 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 41 | 1, 39, 7, 40 | efginvrel2 19657 | . . 3 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
| 42 | 38, 41 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
| 43 | 33, 42 | eqbrtrrd 5131 | 1 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 〈cop 4595 〈cotp 4597 class class class wbr 5107 ↦ cmpt 5188 I cid 5532 × cxp 5636 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1oc1o 8427 2oc2o 8428 0cc0 11068 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 Word cword 14478 ++ cconcat 14535 splice csplice 14714 reversecreverse 14723 〈“cs2 14807 ~FG cefg 19636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-ec 8673 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-efg 19639 |
| This theorem is referenced by: frgp0 19690 |
| Copyright terms: Public domain | W3C validator |