MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredleme Structured version   Visualization version   GIF version

Theorem efgredleme 18863
Description: Lemma for efgred 18868. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
efgredlemb.8 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
efgredlemd.9 (𝜑𝑃 ∈ (ℤ‘(𝑄 + 2)))
efgredlemd.c (𝜑𝐶 ∈ dom 𝑆)
efgredlemd.sc (𝜑 → (𝑆𝐶) = (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
Assertion
Ref Expression
efgredleme (𝜑 → ((𝐴𝐾) ∈ ran (𝑇‘(𝑆𝐶)) ∧ (𝐵𝐿) ∈ ran (𝑇‘(𝑆𝐶))))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏,𝑘,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredleme
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgredlemd.c . . . . . 6 (𝜑𝐶 ∈ dom 𝑆)
2 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
3 efgval.r . . . . . . . . 9 = ( ~FG𝐼)
4 efgval2.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 efgval2.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
6 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
7 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
82, 3, 4, 5, 6, 7efgsf 18849 . . . . . . . 8 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
98fdmi 6518 . . . . . . . . 9 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
109feq2i 6500 . . . . . . . 8 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
118, 10mpbir 233 . . . . . . 7 𝑆:dom 𝑆𝑊
1211ffvelrni 6844 . . . . . 6 (𝐶 ∈ dom 𝑆 → (𝑆𝐶) ∈ 𝑊)
131, 12syl 17 . . . . 5 (𝜑 → (𝑆𝐶) ∈ 𝑊)
14 efgredlemb.q . . . . . . 7 (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
15 elfzuz 12898 . . . . . . 7 (𝑄 ∈ (0...(♯‘(𝐵𝐿))) → 𝑄 ∈ (ℤ‘0))
1614, 15syl 17 . . . . . 6 (𝜑𝑄 ∈ (ℤ‘0))
17 efgredlemd.sc . . . . . . . . . 10 (𝜑 → (𝑆𝐶) = (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
1817fveq2d 6668 . . . . . . . . 9 (𝜑 → (♯‘(𝑆𝐶)) = (♯‘(((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))))
19 fviss 6735 . . . . . . . . . . . . 13 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
202, 19eqsstri 4000 . . . . . . . . . . . 12 𝑊 ⊆ Word (𝐼 × 2o)
21 efgredlem.1 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
22 efgredlem.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ dom 𝑆)
23 efgredlem.3 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ dom 𝑆)
24 efgredlem.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
25 efgredlem.5 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
26 efgredlemb.k . . . . . . . . . . . . . 14 𝐾 = (((♯‘𝐴) − 1) − 1)
27 efgredlemb.l . . . . . . . . . . . . . 14 𝐿 = (((♯‘𝐵) − 1) − 1)
282, 3, 4, 5, 6, 7, 21, 22, 23, 24, 25, 26, 27efgredlemf 18861 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
2928simprd 498 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐿) ∈ 𝑊)
3020, 29sseldi 3964 . . . . . . . . . . 11 (𝜑 → (𝐵𝐿) ∈ Word (𝐼 × 2o))
31 pfxcl 14033 . . . . . . . . . . 11 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o))
3230, 31syl 17 . . . . . . . . . 10 (𝜑 → ((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o))
3328simpld 497 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐾) ∈ 𝑊)
3420, 33sseldi 3964 . . . . . . . . . . 11 (𝜑 → (𝐴𝐾) ∈ Word (𝐼 × 2o))
35 swrdcl 14001 . . . . . . . . . . 11 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
37 ccatlen 13921 . . . . . . . . . 10 ((((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) → (♯‘(((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))))
3832, 36, 37syl2anc 586 . . . . . . . . 9 (𝜑 → (♯‘(((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))))
39 pfxlen 14039 . . . . . . . . . . . 12 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) prefix 𝑄)) = 𝑄)
4030, 14, 39syl2anc 586 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐵𝐿) prefix 𝑄)) = 𝑄)
41 2nn0 11908 . . . . . . . . . . . . . 14 2 ∈ ℕ0
42 uzaddcl 12298 . . . . . . . . . . . . . 14 ((𝑄 ∈ (ℤ‘0) ∧ 2 ∈ ℕ0) → (𝑄 + 2) ∈ (ℤ‘0))
4316, 41, 42sylancl 588 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 2) ∈ (ℤ‘0))
44 efgredlemb.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
45 elfzuz3 12899 . . . . . . . . . . . . . . 15 (𝑃 ∈ (0...(♯‘(𝐴𝐾))) → (♯‘(𝐴𝐾)) ∈ (ℤ𝑃))
4644, 45syl 17 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ𝑃))
47 efgredlemd.9 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ (ℤ‘(𝑄 + 2)))
48 uztrn 12255 . . . . . . . . . . . . . 14 (((♯‘(𝐴𝐾)) ∈ (ℤ𝑃) ∧ 𝑃 ∈ (ℤ‘(𝑄 + 2))) → (♯‘(𝐴𝐾)) ∈ (ℤ‘(𝑄 + 2)))
4946, 47, 48syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ‘(𝑄 + 2)))
50 elfzuzb 12896 . . . . . . . . . . . . 13 ((𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))) ↔ ((𝑄 + 2) ∈ (ℤ‘0) ∧ (♯‘(𝐴𝐾)) ∈ (ℤ‘(𝑄 + 2))))
5143, 49, 50sylanbrc 585 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))))
52 lencl 13877 . . . . . . . . . . . . . . 15 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴𝐾)) ∈ ℕ0)
5334, 52syl 17 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℕ0)
54 nn0uz 12274 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
5553, 54eleqtrdi 2923 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ‘0))
56 eluzfz2 12909 . . . . . . . . . . . . 13 ((♯‘(𝐴𝐾)) ∈ (ℤ‘0) → (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾))))
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾))))
58 swrdlen 14003 . . . . . . . . . . . 12 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))) ∧ (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((♯‘(𝐴𝐾)) − (𝑄 + 2)))
5934, 51, 57, 58syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((♯‘(𝐴𝐾)) − (𝑄 + 2)))
6040, 59oveq12d 7168 . . . . . . . . . 10 (𝜑 → ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = (𝑄 + ((♯‘(𝐴𝐾)) − (𝑄 + 2))))
61 elfzelz 12902 . . . . . . . . . . . . 13 (𝑄 ∈ (0...(♯‘(𝐵𝐿))) → 𝑄 ∈ ℤ)
6214, 61syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℤ)
6362zcnd 12082 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
6453nn0cnd 11951 . . . . . . . . . . 11 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℂ)
65 2z 12008 . . . . . . . . . . . . 13 2 ∈ ℤ
66 zaddcl 12016 . . . . . . . . . . . . 13 ((𝑄 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑄 + 2) ∈ ℤ)
6762, 65, 66sylancl 588 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 2) ∈ ℤ)
6867zcnd 12082 . . . . . . . . . . 11 (𝜑 → (𝑄 + 2) ∈ ℂ)
6963, 64, 68addsubassd 11011 . . . . . . . . . 10 (𝜑 → ((𝑄 + (♯‘(𝐴𝐾))) − (𝑄 + 2)) = (𝑄 + ((♯‘(𝐴𝐾)) − (𝑄 + 2))))
70 2cn 11706 . . . . . . . . . . . 12 2 ∈ ℂ
7170a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
7263, 64, 71pnpcand 11028 . . . . . . . . . 10 (𝜑 → ((𝑄 + (♯‘(𝐴𝐾))) − (𝑄 + 2)) = ((♯‘(𝐴𝐾)) − 2))
7360, 69, 723eqtr2d 2862 . . . . . . . . 9 (𝜑 → ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = ((♯‘(𝐴𝐾)) − 2))
7418, 38, 733eqtrd 2860 . . . . . . . 8 (𝜑 → (♯‘(𝑆𝐶)) = ((♯‘(𝐴𝐾)) − 2))
75 elfzelz 12902 . . . . . . . . . . 11 (𝑃 ∈ (0...(♯‘(𝐴𝐾))) → 𝑃 ∈ ℤ)
7644, 75syl 17 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
77 zsubcl 12018 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 − 2) ∈ ℤ)
7876, 65, 77sylancl 588 . . . . . . . . 9 (𝜑 → (𝑃 − 2) ∈ ℤ)
7965a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℤ)
8076zcnd 12082 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
81 npcan 10889 . . . . . . . . . . . 12 ((𝑃 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑃 − 2) + 2) = 𝑃)
8280, 70, 81sylancl 588 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 2) + 2) = 𝑃)
8382fveq2d 6668 . . . . . . . . . 10 (𝜑 → (ℤ‘((𝑃 − 2) + 2)) = (ℤ𝑃))
8446, 83eleqtrrd 2916 . . . . . . . . 9 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ‘((𝑃 − 2) + 2)))
85 eluzsub 12268 . . . . . . . . 9 (((𝑃 − 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ (♯‘(𝐴𝐾)) ∈ (ℤ‘((𝑃 − 2) + 2))) → ((♯‘(𝐴𝐾)) − 2) ∈ (ℤ‘(𝑃 − 2)))
8678, 79, 84, 85syl3anc 1367 . . . . . . . 8 (𝜑 → ((♯‘(𝐴𝐾)) − 2) ∈ (ℤ‘(𝑃 − 2)))
8774, 86eqeltrd 2913 . . . . . . 7 (𝜑 → (♯‘(𝑆𝐶)) ∈ (ℤ‘(𝑃 − 2)))
88 eluzsub 12268 . . . . . . . 8 ((𝑄 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑃 ∈ (ℤ‘(𝑄 + 2))) → (𝑃 − 2) ∈ (ℤ𝑄))
8962, 79, 47, 88syl3anc 1367 . . . . . . 7 (𝜑 → (𝑃 − 2) ∈ (ℤ𝑄))
90 uztrn 12255 . . . . . . 7 (((♯‘(𝑆𝐶)) ∈ (ℤ‘(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (ℤ𝑄)) → (♯‘(𝑆𝐶)) ∈ (ℤ𝑄))
9187, 89, 90syl2anc 586 . . . . . 6 (𝜑 → (♯‘(𝑆𝐶)) ∈ (ℤ𝑄))
92 elfzuzb 12896 . . . . . 6 (𝑄 ∈ (0...(♯‘(𝑆𝐶))) ↔ (𝑄 ∈ (ℤ‘0) ∧ (♯‘(𝑆𝐶)) ∈ (ℤ𝑄)))
9316, 91, 92sylanbrc 585 . . . . 5 (𝜑𝑄 ∈ (0...(♯‘(𝑆𝐶))))
94 efgredlemb.v . . . . 5 (𝜑𝑉 ∈ (𝐼 × 2o))
952, 3, 4, 5efgtval 18843 . . . . 5 (((𝑆𝐶) ∈ 𝑊𝑄 ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑉 ∈ (𝐼 × 2o)) → (𝑄(𝑇‘(𝑆𝐶))𝑉) = ((𝑆𝐶) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
9613, 93, 94, 95syl3anc 1367 . . . 4 (𝜑 → (𝑄(𝑇‘(𝑆𝐶))𝑉) = ((𝑆𝐶) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
97 pfxcl 14033 . . . . . 6 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o))
9834, 97syl 17 . . . . 5 (𝜑 → ((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o))
99 wrd0 13883 . . . . . 6 ∅ ∈ Word (𝐼 × 2o)
10099a1i 11 . . . . 5 (𝜑 → ∅ ∈ Word (𝐼 × 2o))
1014efgmf 18833 . . . . . . . 8 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
102101ffvelrni 6844 . . . . . . 7 (𝑉 ∈ (𝐼 × 2o) → (𝑀𝑉) ∈ (𝐼 × 2o))
10394, 102syl 17 . . . . . 6 (𝜑 → (𝑀𝑉) ∈ (𝐼 × 2o))
10494, 103s2cld 14227 . . . . 5 (𝜑 → ⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o))
10562zred 12081 . . . . . . . . . . . . . . . . 17 (𝜑𝑄 ∈ ℝ)
106 nn0addge1 11937 . . . . . . . . . . . . . . . . 17 ((𝑄 ∈ ℝ ∧ 2 ∈ ℕ0) → 𝑄 ≤ (𝑄 + 2))
107105, 41, 106sylancl 588 . . . . . . . . . . . . . . . 16 (𝜑𝑄 ≤ (𝑄 + 2))
108 eluz2 12243 . . . . . . . . . . . . . . . 16 ((𝑄 + 2) ∈ (ℤ𝑄) ↔ (𝑄 ∈ ℤ ∧ (𝑄 + 2) ∈ ℤ ∧ 𝑄 ≤ (𝑄 + 2)))
10962, 67, 107, 108syl3anbrc 1339 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 + 2) ∈ (ℤ𝑄))
110 uztrn 12255 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℤ‘(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (ℤ𝑄)) → 𝑃 ∈ (ℤ𝑄))
11147, 109, 110syl2anc 586 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ (ℤ𝑄))
112 elfzuzb 12896 . . . . . . . . . . . . . 14 (𝑄 ∈ (0...𝑃) ↔ (𝑄 ∈ (ℤ‘0) ∧ 𝑃 ∈ (ℤ𝑄)))
11316, 111, 112sylanbrc 585 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (0...𝑃))
114 ccatpfx 14057 . . . . . . . . . . . . 13 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾)))) → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) = ((𝐴𝐾) prefix 𝑃))
11534, 113, 44, 114syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) = ((𝐴𝐾) prefix 𝑃))
116115oveq1d 7165 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) prefix 𝑃) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
117 pfxcl 14033 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) prefix 𝑃) ∈ Word (𝐼 × 2o))
11834, 117syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) prefix 𝑃) ∈ Word (𝐼 × 2o))
119 efgredlemb.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (𝐼 × 2o))
120101ffvelrni 6844 . . . . . . . . . . . . . 14 (𝑈 ∈ (𝐼 × 2o) → (𝑀𝑈) ∈ (𝐼 × 2o))
121119, 120syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀𝑈) ∈ (𝐼 × 2o))
122119, 121s2cld 14227 . . . . . . . . . . . 12 (𝜑 → ⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o))
123 swrdcl 14001 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
12434, 123syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
125 ccatass 13936 . . . . . . . . . . . 12 ((((𝐴𝐾) prefix 𝑃) ∈ Word (𝐼 × 2o) ∧ ⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) → ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix 𝑃) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
126118, 122, 124, 125syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix 𝑃) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
127 efgredlemb.6 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
1282, 3, 4, 5efgtval 18843 . . . . . . . . . . . . . 14 (((𝐴𝐾) ∈ 𝑊𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ 𝑈 ∈ (𝐼 × 2o)) → (𝑃(𝑇‘(𝐴𝐾))𝑈) = ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩))
12933, 44, 119, 128syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (𝑃(𝑇‘(𝐴𝐾))𝑈) = ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩))
130 splval 14107 . . . . . . . . . . . . . 14 (((𝐴𝐾) ∈ 𝑊 ∧ (𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ ⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o))) → ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩) = ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))
13133, 44, 44, 122, 130syl13anc 1368 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩) = ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))
132127, 129, 1313eqtrd 2860 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐴) = ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))
133 efgredlemb.7 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
1342, 3, 4, 5efgtval 18843 . . . . . . . . . . . . . 14 (((𝐵𝐿) ∈ 𝑊𝑄 ∈ (0...(♯‘(𝐵𝐿))) ∧ 𝑉 ∈ (𝐼 × 2o)) → (𝑄(𝑇‘(𝐵𝐿))𝑉) = ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
13529, 14, 94, 134syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (𝑄(𝑇‘(𝐵𝐿))𝑉) = ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
136 splval 14107 . . . . . . . . . . . . . 14 (((𝐵𝐿) ∈ 𝑊 ∧ (𝑄 ∈ (0...(♯‘(𝐵𝐿))) ∧ 𝑄 ∈ (0...(♯‘(𝐵𝐿))) ∧ ⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o))) → ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
13729, 14, 14, 104, 136syl13anc 1368 . . . . . . . . . . . . 13 (𝜑 → ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
138133, 135, 1373eqtrd 2860 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐵) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
13924, 132, 1383eqtr3d 2864 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
140116, 126, 1393eqtr2d 2862 . . . . . . . . . 10 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
141 swrdcl 14001 . . . . . . . . . . . 12 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o))
14234, 141syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o))
143 ccatcl 13920 . . . . . . . . . . . 12 ((⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o))
144122, 124, 143syl2anc 586 . . . . . . . . . . 11 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o))
145 ccatass 13936 . . . . . . . . . . 11 ((((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
14698, 142, 144, 145syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
147 swrdcl 14001 . . . . . . . . . . . 12 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
14830, 147syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
149 ccatass 13936 . . . . . . . . . . 11 ((((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) → ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
15032, 104, 148, 149syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
151140, 146, 1503eqtr3d 2864 . . . . . . . . 9 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
152 ccatcl 13920 . . . . . . . . . . 11 ((((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
153142, 144, 152syl2anc 586 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
154 ccatcl 13920 . . . . . . . . . . 11 ((⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) → (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ∈ Word (𝐼 × 2o))
155104, 148, 154syl2anc 586 . . . . . . . . . 10 (𝜑 → (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ∈ Word (𝐼 × 2o))
156 uztrn 12255 . . . . . . . . . . . . . 14 (((♯‘(𝐴𝐾)) ∈ (ℤ𝑃) ∧ 𝑃 ∈ (ℤ𝑄)) → (♯‘(𝐴𝐾)) ∈ (ℤ𝑄))
15746, 111, 156syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ𝑄))
158 elfzuzb 12896 . . . . . . . . . . . . 13 (𝑄 ∈ (0...(♯‘(𝐴𝐾))) ↔ (𝑄 ∈ (ℤ‘0) ∧ (♯‘(𝐴𝐾)) ∈ (ℤ𝑄)))
15916, 157, 158sylanbrc 585 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (0...(♯‘(𝐴𝐾))))
160 pfxlen 14039 . . . . . . . . . . . 12 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) prefix 𝑄)) = 𝑄)
16134, 159, 160syl2anc 586 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴𝐾) prefix 𝑄)) = 𝑄)
162161, 40eqtr4d 2859 . . . . . . . . . 10 (𝜑 → (♯‘((𝐴𝐾) prefix 𝑄)) = (♯‘((𝐵𝐿) prefix 𝑄)))
163 ccatopth 14072 . . . . . . . . . 10 (((((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o)) ∧ (((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ∈ Word (𝐼 × 2o)) ∧ (♯‘((𝐴𝐾) prefix 𝑄)) = (♯‘((𝐵𝐿) prefix 𝑄))) → ((((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))) ↔ (((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))))
16498, 153, 32, 155, 162, 163syl221anc 1377 . . . . . . . . 9 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))) ↔ (((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))))
165151, 164mpbid 234 . . . . . . . 8 (𝜑 → (((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
166165simpld 497 . . . . . . 7 (𝜑 → ((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄))
167166oveq1d 7165 . . . . . 6 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
168 ccatrid 13935 . . . . . . . 8 (((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o) → (((𝐴𝐾) prefix 𝑄) ++ ∅) = ((𝐴𝐾) prefix 𝑄))
16998, 168syl 17 . . . . . . 7 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ∅) = ((𝐴𝐾) prefix 𝑄))
170169oveq1d 7165 . . . . . 6 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ∅) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
171167, 170, 173eqtr4rd 2867 . . . . 5 (𝜑 → (𝑆𝐶) = ((((𝐴𝐾) prefix 𝑄) ++ ∅) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
172161eqcomd 2827 . . . . 5 (𝜑𝑄 = (♯‘((𝐴𝐾) prefix 𝑄)))
173 hash0 13722 . . . . . . 7 (♯‘∅) = 0
174173oveq2i 7161 . . . . . 6 (𝑄 + (♯‘∅)) = (𝑄 + 0)
17563addid1d 10834 . . . . . 6 (𝜑 → (𝑄 + 0) = 𝑄)
176174, 175syl5req 2869 . . . . 5 (𝜑𝑄 = (𝑄 + (♯‘∅)))
17798, 100, 36, 104, 171, 172, 176splval2 14113 . . . 4 (𝜑 → ((𝑆𝐶) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩) = ((((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
178 elfzuzb 12896 . . . . . . . . . . . . . 14 (𝑄 ∈ (0...(𝑄 + 2)) ↔ (𝑄 ∈ (ℤ‘0) ∧ (𝑄 + 2) ∈ (ℤ𝑄)))
17916, 109, 178sylanbrc 585 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (0...(𝑄 + 2)))
180 elfzuzb 12896 . . . . . . . . . . . . . 14 ((𝑄 + 2) ∈ (0...𝑃) ↔ ((𝑄 + 2) ∈ (ℤ‘0) ∧ 𝑃 ∈ (ℤ‘(𝑄 + 2))))
18143, 47, 180sylanbrc 585 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 2) ∈ (0...𝑃))
182 ccatswrd 14024 . . . . . . . . . . . . 13 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 ∈ (0...(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾))))) → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩))
18334, 179, 181, 44, 182syl13anc 1368 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩))
184183oveq1d 7165 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
185 swrdcl 14001 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o))
18634, 185syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o))
187 swrdcl 14001 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
18834, 187syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
189 ccatass 13936 . . . . . . . . . . . 12 ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
190186, 188, 144, 189syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
191165simprd 498 . . . . . . . . . . 11 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
192184, 190, 1913eqtr3d 2864 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
193 ccatcl 13920 . . . . . . . . . . . 12 ((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
194188, 144, 193syl2anc 586 . . . . . . . . . . 11 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
195 swrdlen 14003 . . . . . . . . . . . . . 14 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝑄 + 2) − 𝑄))
19634, 179, 51, 195syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝑄 + 2) − 𝑄))
197 pncan2 10887 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑄 + 2) − 𝑄) = 2)
19863, 70, 197sylancl 588 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 + 2) − 𝑄) = 2)
199196, 198eqtrd 2856 . . . . . . . . . . . 12 (𝜑 → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = 2)
200 s2len 14245 . . . . . . . . . . . 12 (♯‘⟨“𝑉(𝑀𝑉)”⟩) = 2
201199, 200syl6eqr 2874 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = (♯‘⟨“𝑉(𝑀𝑉)”⟩))
202 ccatopth 14072 . . . . . . . . . . 11 (((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o) ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o)) ∧ (⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) ∧ (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = (♯‘⟨“𝑉(𝑀𝑉)”⟩)) → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩ ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
203186, 194, 104, 148, 201, 202syl221anc 1377 . . . . . . . . . 10 (𝜑 → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩ ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
204192, 203mpbid 234 . . . . . . . . 9 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩ ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
205204simpld 497 . . . . . . . 8 (𝜑 → ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩)
206205oveq2d 7166 . . . . . . 7 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = (((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩))
207 ccatpfx 14057 . . . . . . . 8 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾)))) → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝐴𝐾) prefix (𝑄 + 2)))
20834, 179, 51, 207syl3anc 1367 . . . . . . 7 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝐴𝐾) prefix (𝑄 + 2)))
209206, 208eqtr3d 2858 . . . . . 6 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) = ((𝐴𝐾) prefix (𝑄 + 2)))
210209oveq1d 7165 . . . . 5 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix (𝑄 + 2)) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
211 ccatpfx 14057 . . . . . 6 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))) ∧ (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾)))) → (((𝐴𝐾) prefix (𝑄 + 2)) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) prefix (♯‘(𝐴𝐾))))
21234, 51, 57, 211syl3anc 1367 . . . . 5 (𝜑 → (((𝐴𝐾) prefix (𝑄 + 2)) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) prefix (♯‘(𝐴𝐾))))
213 pfxid 14040 . . . . . 6 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) prefix (♯‘(𝐴𝐾))) = (𝐴𝐾))
21434, 213syl 17 . . . . 5 (𝜑 → ((𝐴𝐾) prefix (♯‘(𝐴𝐾))) = (𝐴𝐾))
215210, 212, 2143eqtrd 2860 . . . 4 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (𝐴𝐾))
21696, 177, 2153eqtrd 2860 . . 3 (𝜑 → (𝑄(𝑇‘(𝑆𝐶))𝑉) = (𝐴𝐾))
2172, 3, 4, 5efgtf 18842 . . . . . . 7 ((𝑆𝐶) ∈ 𝑊 → ((𝑇‘(𝑆𝐶)) = (𝑎 ∈ (0...(♯‘(𝑆𝐶))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆𝐶) splice ⟨𝑎, 𝑎, ⟨“𝑖(𝑀𝑖)”⟩⟩)) ∧ (𝑇‘(𝑆𝐶)):((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o))⟶𝑊))
21813, 217syl 17 . . . . . 6 (𝜑 → ((𝑇‘(𝑆𝐶)) = (𝑎 ∈ (0...(♯‘(𝑆𝐶))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆𝐶) splice ⟨𝑎, 𝑎, ⟨“𝑖(𝑀𝑖)”⟩⟩)) ∧ (𝑇‘(𝑆𝐶)):((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o))⟶𝑊))
219218simprd 498 . . . . 5 (𝜑 → (𝑇‘(𝑆𝐶)):((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o))⟶𝑊)
220219ffnd 6509 . . . 4 (𝜑 → (𝑇‘(𝑆𝐶)) Fn ((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o)))
221 fnovrn 7317 . . . 4 (((𝑇‘(𝑆𝐶)) Fn ((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o)) ∧ 𝑄 ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑉 ∈ (𝐼 × 2o)) → (𝑄(𝑇‘(𝑆𝐶))𝑉) ∈ ran (𝑇‘(𝑆𝐶)))
222220, 93, 94, 221syl3anc 1367 . . 3 (𝜑 → (𝑄(𝑇‘(𝑆𝐶))𝑉) ∈ ran (𝑇‘(𝑆𝐶)))
223216, 222eqeltrrd 2914 . 2 (𝜑 → (𝐴𝐾) ∈ ran (𝑇‘(𝑆𝐶)))
224 uztrn 12255 . . . . . . 7 (((𝑃 − 2) ∈ (ℤ𝑄) ∧ 𝑄 ∈ (ℤ‘0)) → (𝑃 − 2) ∈ (ℤ‘0))
22589, 16, 224syl2anc 586 . . . . . 6 (𝜑 → (𝑃 − 2) ∈ (ℤ‘0))
226 elfzuzb 12896 . . . . . 6 ((𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))) ↔ ((𝑃 − 2) ∈ (ℤ‘0) ∧ (♯‘(𝑆𝐶)) ∈ (ℤ‘(𝑃 − 2))))
227225, 87, 226sylanbrc 585 . . . . 5 (𝜑 → (𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))))
2282, 3, 4, 5efgtval 18843 . . . . 5 (((𝑆𝐶) ∈ 𝑊 ∧ (𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑈 ∈ (𝐼 × 2o)) → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) = ((𝑆𝐶) splice ⟨(𝑃 − 2), (𝑃 − 2), ⟨“𝑈(𝑀𝑈)”⟩⟩))
22913, 227, 119, 228syl3anc 1367 . . . 4 (𝜑 → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) = ((𝑆𝐶) splice ⟨(𝑃 − 2), (𝑃 − 2), ⟨“𝑈(𝑀𝑈)”⟩⟩))
230 pfxcl 14033 . . . . . 6 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) prefix (𝑃 − 2)) ∈ Word (𝐼 × 2o))
23130, 230syl 17 . . . . 5 (𝜑 → ((𝐵𝐿) prefix (𝑃 − 2)) ∈ Word (𝐼 × 2o))
232 swrdcl 14001 . . . . . 6 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
23330, 232syl 17 . . . . 5 (𝜑 → ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
234 ccatswrd 14024 . . . . . . . . . . 11 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ ((𝑄 + 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾))))) → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))
23534, 181, 44, 57, 234syl13anc 1368 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))
236204simprd 498 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))
237 elfzuzb 12896 . . . . . . . . . . . . . . . 16 (𝑄 ∈ (0...(𝑃 − 2)) ↔ (𝑄 ∈ (ℤ‘0) ∧ (𝑃 − 2) ∈ (ℤ𝑄)))
23816, 89, 237sylanbrc 585 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (0...(𝑃 − 2)))
2392, 3, 4, 5, 6, 7, 21, 22, 23, 24, 25, 26, 27, 44, 14, 119, 94, 127, 133efgredlemg 18862 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
240239, 46eqeltrrd 2914 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘(𝐵𝐿)) ∈ (ℤ𝑃))
241 0le2 11733 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 2
242241a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 2)
24376zred 12081 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℝ)
244 2re 11705 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
245 subge02 11150 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℝ ∧ 2 ∈ ℝ) → (0 ≤ 2 ↔ (𝑃 − 2) ≤ 𝑃))
246243, 244, 245sylancl 588 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0 ≤ 2 ↔ (𝑃 − 2) ≤ 𝑃))
247242, 246mpbid 234 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 2) ≤ 𝑃)
248 eluz2 12243 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘(𝑃 − 2)) ↔ ((𝑃 − 2) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − 2) ≤ 𝑃))
24978, 76, 247, 248syl3anbrc 1339 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ (ℤ‘(𝑃 − 2)))
250 uztrn 12255 . . . . . . . . . . . . . . . . 17 (((♯‘(𝐵𝐿)) ∈ (ℤ𝑃) ∧ 𝑃 ∈ (ℤ‘(𝑃 − 2))) → (♯‘(𝐵𝐿)) ∈ (ℤ‘(𝑃 − 2)))
251240, 249, 250syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘(𝐵𝐿)) ∈ (ℤ‘(𝑃 − 2)))
252 elfzuzb 12896 . . . . . . . . . . . . . . . 16 ((𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿))) ↔ ((𝑃 − 2) ∈ (ℤ‘0) ∧ (♯‘(𝐵𝐿)) ∈ (ℤ‘(𝑃 − 2))))
253225, 251, 252sylanbrc 585 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿))))
254 lencl 13877 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵𝐿)) ∈ ℕ0)
25530, 254syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℕ0)
256255, 54eleqtrdi 2923 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘(𝐵𝐿)) ∈ (ℤ‘0))
257 eluzfz2 12909 . . . . . . . . . . . . . . . 16 ((♯‘(𝐵𝐿)) ∈ (ℤ‘0) → (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))
258256, 257syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))
259 ccatswrd 14024 . . . . . . . . . . . . . . 15 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑄 ∈ (0...(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿))) ∧ (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))) → (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))
26030, 238, 253, 258, 259syl13anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))
261236, 260eqtr4d 2859 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)))
262 swrdcl 14001 . . . . . . . . . . . . . . 15 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o))
26330, 262syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o))
264 swrdcl 14001 . . . . . . . . . . . . . . 15 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
26530, 264syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
266 swrdlen 14003 . . . . . . . . . . . . . . . 16 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 + 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (𝑃 − (𝑄 + 2)))
26734, 181, 44, 266syl3anc 1367 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (𝑃 − (𝑄 + 2)))
268 swrdlen 14003 . . . . . . . . . . . . . . . . 17 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝑃 − 2) − 𝑄))
26930, 238, 253, 268syl3anc 1367 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝑃 − 2) − 𝑄))
27080, 63, 71sub32d 11023 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃𝑄) − 2) = ((𝑃 − 2) − 𝑄))
27180, 63, 71subsub4d 11022 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃𝑄) − 2) = (𝑃 − (𝑄 + 2)))
272269, 270, 2713eqtr2d 2862 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = (𝑃 − (𝑄 + 2)))
273267, 272eqtr4d 2859 . . . . . . . . . . . . . 14 (𝜑 → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)))
274 ccatopth 14072 . . . . . . . . . . . . . 14 (((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) ∧ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) ∧ (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩))) → ((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))))
275188, 144, 263, 265, 273, 274syl221anc 1377 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))))
276261, 275mpbid 234 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)))
277276simpld 497 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩))
278276simprd 498 . . . . . . . . . . . . . 14 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))
279 elfzuzb 12896 . . . . . . . . . . . . . . . 16 ((𝑃 − 2) ∈ (0...𝑃) ↔ ((𝑃 − 2) ∈ (ℤ‘0) ∧ 𝑃 ∈ (ℤ‘(𝑃 − 2))))
280225, 249, 279sylanbrc 585 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 2) ∈ (0...𝑃))
281 elfzuz 12898 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (0...(♯‘(𝐴𝐾))) → 𝑃 ∈ (ℤ‘0))
28244, 281syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (ℤ‘0))
283 elfzuzb 12896 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (0...(♯‘(𝐵𝐿))) ↔ (𝑃 ∈ (ℤ‘0) ∧ (♯‘(𝐵𝐿)) ∈ (ℤ𝑃)))
284282, 240, 283sylanbrc 585 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (0...(♯‘(𝐵𝐿))))
285 ccatswrd 14024 . . . . . . . . . . . . . . 15 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ ((𝑃 − 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿))) ∧ (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))) → (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))
28630, 280, 284, 258, 285syl13anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))
287278, 286eqtr4d 2859 . . . . . . . . . . . . 13 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
288 swrdcl 14001 . . . . . . . . . . . . . . 15 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
28930, 288syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
290 s2len 14245 . . . . . . . . . . . . . . 15 (♯‘⟨“𝑈(𝑀𝑈)”⟩) = 2
291 swrdlen 14003 . . . . . . . . . . . . . . . . 17 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑃 − 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = (𝑃 − (𝑃 − 2)))
29230, 280, 284, 291syl3anc 1367 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = (𝑃 − (𝑃 − 2)))
293 nncan 10909 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑃 − (𝑃 − 2)) = 2)
29480, 70, 293sylancl 588 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − (𝑃 − 2)) = 2)
295292, 294eqtr2d 2857 . . . . . . . . . . . . . . 15 (𝜑 → 2 = (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)))
296290, 295syl5eq 2868 . . . . . . . . . . . . . 14 (𝜑 → (♯‘⟨“𝑈(𝑀𝑈)”⟩) = (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)))
297 ccatopth 14072 . . . . . . . . . . . . . 14 (((⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) ∧ (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) ∧ (♯‘⟨“𝑈(𝑀𝑈)”⟩) = (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩))) → ((⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) ↔ (⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
298122, 124, 289, 233, 296, 297syl221anc 1377 . . . . . . . . . . . . 13 (𝜑 → ((⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) ↔ (⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
299287, 298mpbid 234 . . . . . . . . . . . 12 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
300299simprd 498 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))
301277, 300oveq12d 7168 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
302235, 301eqtr3d 2858 . . . . . . . . 9 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
303302oveq2d 7166 . . . . . . . 8 (𝜑 → (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
304 ccatass 13936 . . . . . . . . 9 ((((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) → ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
30532, 263, 233, 304syl3anc 1367 . . . . . . . 8 (𝜑 → ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
306303, 305eqtr4d 2859 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
307 ccatpfx 14057 . . . . . . . . 9 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿)))) → (((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝐵𝐿) prefix (𝑃 − 2)))
30830, 238, 253, 307syl3anc 1367 . . . . . . . 8 (𝜑 → (((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝐵𝐿) prefix (𝑃 − 2)))
309308oveq1d 7165 . . . . . . 7 (𝜑 → ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
31017, 306, 3093eqtrd 2860 . . . . . 6 (𝜑 → (𝑆𝐶) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
311 ccatrid 13935 . . . . . . . 8 (((𝐵𝐿) prefix (𝑃 − 2)) ∈ Word (𝐼 × 2o) → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) = ((𝐵𝐿) prefix (𝑃 − 2)))
312231, 311syl 17 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) = ((𝐵𝐿) prefix (𝑃 − 2)))
313312oveq1d 7165 . . . . . 6 (𝜑 → ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
314310, 313eqtr4d 2859 . . . . 5 (𝜑 → (𝑆𝐶) = ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
315 pfxlen 14039 . . . . . . 7 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) prefix (𝑃 − 2))) = (𝑃 − 2))
31630, 253, 315syl2anc 586 . . . . . 6 (𝜑 → (♯‘((𝐵𝐿) prefix (𝑃 − 2))) = (𝑃 − 2))
317316eqcomd 2827 . . . . 5 (𝜑 → (𝑃 − 2) = (♯‘((𝐵𝐿) prefix (𝑃 − 2))))
318173oveq2i 7161 . . . . . 6 ((𝑃 − 2) + (♯‘∅)) = ((𝑃 − 2) + 0)
31978zcnd 12082 . . . . . . 7 (𝜑 → (𝑃 − 2) ∈ ℂ)
320319addid1d 10834 . . . . . 6 (𝜑 → ((𝑃 − 2) + 0) = (𝑃 − 2))
321318, 320syl5req 2869 . . . . 5 (𝜑 → (𝑃 − 2) = ((𝑃 − 2) + (♯‘∅)))
322231, 100, 233, 122, 314, 317, 321splval2 14113 . . . 4 (𝜑 → ((𝑆𝐶) splice ⟨(𝑃 − 2), (𝑃 − 2), ⟨“𝑈(𝑀𝑈)”⟩⟩) = ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
323299simpld 497 . . . . . . . 8 (𝜑 → ⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩))
324323oveq2d 7166 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)))
325 ccatpfx 14057 . . . . . . . 8 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑃 − 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿)))) → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = ((𝐵𝐿) prefix 𝑃))
32630, 280, 284, 325syl3anc 1367 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = ((𝐵𝐿) prefix 𝑃))
327324, 326eqtrd 2856 . . . . . 6 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) = ((𝐵𝐿) prefix 𝑃))
328327oveq1d 7165 . . . . 5 (𝜑 → ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑃) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
329 ccatpfx 14057 . . . . . 6 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿))) ∧ (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿)))) → (((𝐵𝐿) prefix 𝑃) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) prefix (♯‘(𝐵𝐿))))
33030, 284, 258, 329syl3anc 1367 . . . . 5 (𝜑 → (((𝐵𝐿) prefix 𝑃) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) prefix (♯‘(𝐵𝐿))))
331 pfxid 14040 . . . . . 6 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) prefix (♯‘(𝐵𝐿))) = (𝐵𝐿))
33230, 331syl 17 . . . . 5 (𝜑 → ((𝐵𝐿) prefix (♯‘(𝐵𝐿))) = (𝐵𝐿))
333328, 330, 3323eqtrd 2860 . . . 4 (𝜑 → ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (𝐵𝐿))
334229, 322, 3333eqtrd 2860 . . 3 (𝜑 → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) = (𝐵𝐿))
335 fnovrn 7317 . . . 4 (((𝑇‘(𝑆𝐶)) Fn ((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑈 ∈ (𝐼 × 2o)) → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) ∈ ran (𝑇‘(𝑆𝐶)))
336220, 227, 119, 335syl3anc 1367 . . 3 (𝜑 → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) ∈ ran (𝑇‘(𝑆𝐶)))
337334, 336eqeltrrd 2914 . 2 (𝜑 → (𝐵𝐿) ∈ ran (𝑇‘(𝑆𝐶)))
338223, 337jca 514 1 (𝜑 → ((𝐴𝐾) ∈ ran (𝑇‘(𝑆𝐶)) ∧ (𝐵𝐿) ∈ ran (𝑇‘(𝑆𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cdif 3932  c0 4290  {csn 4560  cop 4566  cotp 4568   ciun 4911   class class class wbr 5058  cmpt 5138   I cid 5453   × cxp 5547  dom cdm 5549  ran crn 5550   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  1oc1o 8089  2oc2o 8090  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  2c2 11686  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855   ++ cconcat 13916   substr csubstr 13996   prefix cpfx 14026   splice csplice 14105  ⟨“cs2 14197   ~FG cefg 18826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-s2 14204
This theorem is referenced by:  efgredlemd  18864
  Copyright terms: Public domain W3C validator