MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredleme Structured version   Visualization version   GIF version

Theorem efgredleme 19349
Description: Lemma for efgred 19354. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
efgredlemb.8 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
efgredlemd.9 (𝜑𝑃 ∈ (ℤ‘(𝑄 + 2)))
efgredlemd.c (𝜑𝐶 ∈ dom 𝑆)
efgredlemd.sc (𝜑 → (𝑆𝐶) = (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
Assertion
Ref Expression
efgredleme (𝜑 → ((𝐴𝐾) ∈ ran (𝑇‘(𝑆𝐶)) ∧ (𝐵𝐿) ∈ ran (𝑇‘(𝑆𝐶))))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏,𝑘,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredleme
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgredlemd.c . . . . . 6 (𝜑𝐶 ∈ dom 𝑆)
2 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
3 efgval.r . . . . . . . . 9 = ( ~FG𝐼)
4 efgval2.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 efgval2.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
6 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
7 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
82, 3, 4, 5, 6, 7efgsf 19335 . . . . . . . 8 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
98fdmi 6612 . . . . . . . . 9 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
109feq2i 6592 . . . . . . . 8 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
118, 10mpbir 230 . . . . . . 7 𝑆:dom 𝑆𝑊
1211ffvelrni 6960 . . . . . 6 (𝐶 ∈ dom 𝑆 → (𝑆𝐶) ∈ 𝑊)
131, 12syl 17 . . . . 5 (𝜑 → (𝑆𝐶) ∈ 𝑊)
14 efgredlemb.q . . . . . . 7 (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
15 elfzuz 13252 . . . . . . 7 (𝑄 ∈ (0...(♯‘(𝐵𝐿))) → 𝑄 ∈ (ℤ‘0))
1614, 15syl 17 . . . . . 6 (𝜑𝑄 ∈ (ℤ‘0))
17 efgredlemd.sc . . . . . . . . . 10 (𝜑 → (𝑆𝐶) = (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
1817fveq2d 6778 . . . . . . . . 9 (𝜑 → (♯‘(𝑆𝐶)) = (♯‘(((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))))
19 fviss 6845 . . . . . . . . . . . . 13 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
202, 19eqsstri 3955 . . . . . . . . . . . 12 𝑊 ⊆ Word (𝐼 × 2o)
21 efgredlem.1 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
22 efgredlem.2 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ dom 𝑆)
23 efgredlem.3 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ dom 𝑆)
24 efgredlem.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
25 efgredlem.5 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
26 efgredlemb.k . . . . . . . . . . . . . 14 𝐾 = (((♯‘𝐴) − 1) − 1)
27 efgredlemb.l . . . . . . . . . . . . . 14 𝐿 = (((♯‘𝐵) − 1) − 1)
282, 3, 4, 5, 6, 7, 21, 22, 23, 24, 25, 26, 27efgredlemf 19347 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
2928simprd 496 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐿) ∈ 𝑊)
3020, 29sselid 3919 . . . . . . . . . . 11 (𝜑 → (𝐵𝐿) ∈ Word (𝐼 × 2o))
31 pfxcl 14390 . . . . . . . . . . 11 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o))
3230, 31syl 17 . . . . . . . . . 10 (𝜑 → ((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o))
3328simpld 495 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐾) ∈ 𝑊)
3420, 33sselid 3919 . . . . . . . . . . 11 (𝜑 → (𝐴𝐾) ∈ Word (𝐼 × 2o))
35 swrdcl 14358 . . . . . . . . . . 11 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
3634, 35syl 17 . . . . . . . . . 10 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
37 ccatlen 14278 . . . . . . . . . 10 ((((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) → (♯‘(((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))))
3832, 36, 37syl2anc 584 . . . . . . . . 9 (𝜑 → (♯‘(((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))))
39 pfxlen 14396 . . . . . . . . . . . 12 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) prefix 𝑄)) = 𝑄)
4030, 14, 39syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐵𝐿) prefix 𝑄)) = 𝑄)
41 2nn0 12250 . . . . . . . . . . . . . 14 2 ∈ ℕ0
42 uzaddcl 12644 . . . . . . . . . . . . . 14 ((𝑄 ∈ (ℤ‘0) ∧ 2 ∈ ℕ0) → (𝑄 + 2) ∈ (ℤ‘0))
4316, 41, 42sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 2) ∈ (ℤ‘0))
44 efgredlemb.p . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
45 elfzuz3 13253 . . . . . . . . . . . . . . 15 (𝑃 ∈ (0...(♯‘(𝐴𝐾))) → (♯‘(𝐴𝐾)) ∈ (ℤ𝑃))
4644, 45syl 17 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ𝑃))
47 efgredlemd.9 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ (ℤ‘(𝑄 + 2)))
48 uztrn 12600 . . . . . . . . . . . . . 14 (((♯‘(𝐴𝐾)) ∈ (ℤ𝑃) ∧ 𝑃 ∈ (ℤ‘(𝑄 + 2))) → (♯‘(𝐴𝐾)) ∈ (ℤ‘(𝑄 + 2)))
4946, 47, 48syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ‘(𝑄 + 2)))
50 elfzuzb 13250 . . . . . . . . . . . . 13 ((𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))) ↔ ((𝑄 + 2) ∈ (ℤ‘0) ∧ (♯‘(𝐴𝐾)) ∈ (ℤ‘(𝑄 + 2))))
5143, 49, 50sylanbrc 583 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))))
52 lencl 14236 . . . . . . . . . . . . . . 15 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → (♯‘(𝐴𝐾)) ∈ ℕ0)
5334, 52syl 17 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℕ0)
54 nn0uz 12620 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
5553, 54eleqtrdi 2849 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ‘0))
56 eluzfz2 13264 . . . . . . . . . . . . 13 ((♯‘(𝐴𝐾)) ∈ (ℤ‘0) → (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾))))
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾))))
58 swrdlen 14360 . . . . . . . . . . . 12 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))) ∧ (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((♯‘(𝐴𝐾)) − (𝑄 + 2)))
5934, 51, 57, 58syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((♯‘(𝐴𝐾)) − (𝑄 + 2)))
6040, 59oveq12d 7293 . . . . . . . . . 10 (𝜑 → ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = (𝑄 + ((♯‘(𝐴𝐾)) − (𝑄 + 2))))
6114elfzelzd 13257 . . . . . . . . . . . 12 (𝜑𝑄 ∈ ℤ)
6261zcnd 12427 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
6353nn0cnd 12295 . . . . . . . . . . 11 (𝜑 → (♯‘(𝐴𝐾)) ∈ ℂ)
64 2z 12352 . . . . . . . . . . . . 13 2 ∈ ℤ
65 zaddcl 12360 . . . . . . . . . . . . 13 ((𝑄 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑄 + 2) ∈ ℤ)
6661, 64, 65sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 2) ∈ ℤ)
6766zcnd 12427 . . . . . . . . . . 11 (𝜑 → (𝑄 + 2) ∈ ℂ)
6862, 63, 67addsubassd 11352 . . . . . . . . . 10 (𝜑 → ((𝑄 + (♯‘(𝐴𝐾))) − (𝑄 + 2)) = (𝑄 + ((♯‘(𝐴𝐾)) − (𝑄 + 2))))
69 2cn 12048 . . . . . . . . . . . 12 2 ∈ ℂ
7069a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
7162, 63, 70pnpcand 11369 . . . . . . . . . 10 (𝜑 → ((𝑄 + (♯‘(𝐴𝐾))) − (𝑄 + 2)) = ((♯‘(𝐴𝐾)) − 2))
7260, 68, 713eqtr2d 2784 . . . . . . . . 9 (𝜑 → ((♯‘((𝐵𝐿) prefix 𝑄)) + (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))) = ((♯‘(𝐴𝐾)) − 2))
7318, 38, 723eqtrd 2782 . . . . . . . 8 (𝜑 → (♯‘(𝑆𝐶)) = ((♯‘(𝐴𝐾)) − 2))
7444elfzelzd 13257 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
75 zsubcl 12362 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑃 − 2) ∈ ℤ)
7674, 64, 75sylancl 586 . . . . . . . . 9 (𝜑 → (𝑃 − 2) ∈ ℤ)
7764a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℤ)
7874zcnd 12427 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
79 npcan 11230 . . . . . . . . . . . 12 ((𝑃 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑃 − 2) + 2) = 𝑃)
8078, 69, 79sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 2) + 2) = 𝑃)
8180fveq2d 6778 . . . . . . . . . 10 (𝜑 → (ℤ‘((𝑃 − 2) + 2)) = (ℤ𝑃))
8246, 81eleqtrrd 2842 . . . . . . . . 9 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ‘((𝑃 − 2) + 2)))
83 eluzsub 12614 . . . . . . . . 9 (((𝑃 − 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ (♯‘(𝐴𝐾)) ∈ (ℤ‘((𝑃 − 2) + 2))) → ((♯‘(𝐴𝐾)) − 2) ∈ (ℤ‘(𝑃 − 2)))
8476, 77, 82, 83syl3anc 1370 . . . . . . . 8 (𝜑 → ((♯‘(𝐴𝐾)) − 2) ∈ (ℤ‘(𝑃 − 2)))
8573, 84eqeltrd 2839 . . . . . . 7 (𝜑 → (♯‘(𝑆𝐶)) ∈ (ℤ‘(𝑃 − 2)))
86 eluzsub 12614 . . . . . . . 8 ((𝑄 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑃 ∈ (ℤ‘(𝑄 + 2))) → (𝑃 − 2) ∈ (ℤ𝑄))
8761, 77, 47, 86syl3anc 1370 . . . . . . 7 (𝜑 → (𝑃 − 2) ∈ (ℤ𝑄))
88 uztrn 12600 . . . . . . 7 (((♯‘(𝑆𝐶)) ∈ (ℤ‘(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (ℤ𝑄)) → (♯‘(𝑆𝐶)) ∈ (ℤ𝑄))
8985, 87, 88syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑆𝐶)) ∈ (ℤ𝑄))
90 elfzuzb 13250 . . . . . 6 (𝑄 ∈ (0...(♯‘(𝑆𝐶))) ↔ (𝑄 ∈ (ℤ‘0) ∧ (♯‘(𝑆𝐶)) ∈ (ℤ𝑄)))
9116, 89, 90sylanbrc 583 . . . . 5 (𝜑𝑄 ∈ (0...(♯‘(𝑆𝐶))))
92 efgredlemb.v . . . . 5 (𝜑𝑉 ∈ (𝐼 × 2o))
932, 3, 4, 5efgtval 19329 . . . . 5 (((𝑆𝐶) ∈ 𝑊𝑄 ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑉 ∈ (𝐼 × 2o)) → (𝑄(𝑇‘(𝑆𝐶))𝑉) = ((𝑆𝐶) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
9413, 91, 92, 93syl3anc 1370 . . . 4 (𝜑 → (𝑄(𝑇‘(𝑆𝐶))𝑉) = ((𝑆𝐶) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
95 pfxcl 14390 . . . . . 6 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o))
9634, 95syl 17 . . . . 5 (𝜑 → ((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o))
97 wrd0 14242 . . . . . 6 ∅ ∈ Word (𝐼 × 2o)
9897a1i 11 . . . . 5 (𝜑 → ∅ ∈ Word (𝐼 × 2o))
994efgmf 19319 . . . . . . . 8 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
10099ffvelrni 6960 . . . . . . 7 (𝑉 ∈ (𝐼 × 2o) → (𝑀𝑉) ∈ (𝐼 × 2o))
10192, 100syl 17 . . . . . 6 (𝜑 → (𝑀𝑉) ∈ (𝐼 × 2o))
10292, 101s2cld 14584 . . . . 5 (𝜑 → ⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o))
10361zred 12426 . . . . . . . . . . . . . . . . 17 (𝜑𝑄 ∈ ℝ)
104 nn0addge1 12279 . . . . . . . . . . . . . . . . 17 ((𝑄 ∈ ℝ ∧ 2 ∈ ℕ0) → 𝑄 ≤ (𝑄 + 2))
105103, 41, 104sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑𝑄 ≤ (𝑄 + 2))
106 eluz2 12588 . . . . . . . . . . . . . . . 16 ((𝑄 + 2) ∈ (ℤ𝑄) ↔ (𝑄 ∈ ℤ ∧ (𝑄 + 2) ∈ ℤ ∧ 𝑄 ≤ (𝑄 + 2)))
10761, 66, 105, 106syl3anbrc 1342 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 + 2) ∈ (ℤ𝑄))
108 uztrn 12600 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℤ‘(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (ℤ𝑄)) → 𝑃 ∈ (ℤ𝑄))
10947, 107, 108syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ (ℤ𝑄))
110 elfzuzb 13250 . . . . . . . . . . . . . 14 (𝑄 ∈ (0...𝑃) ↔ (𝑄 ∈ (ℤ‘0) ∧ 𝑃 ∈ (ℤ𝑄)))
11116, 109, 110sylanbrc 583 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (0...𝑃))
112 ccatpfx 14414 . . . . . . . . . . . . 13 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾)))) → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) = ((𝐴𝐾) prefix 𝑃))
11334, 111, 44, 112syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) = ((𝐴𝐾) prefix 𝑃))
114113oveq1d 7290 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) prefix 𝑃) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
115 pfxcl 14390 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) prefix 𝑃) ∈ Word (𝐼 × 2o))
11634, 115syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) prefix 𝑃) ∈ Word (𝐼 × 2o))
117 efgredlemb.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (𝐼 × 2o))
11899ffvelrni 6960 . . . . . . . . . . . . . 14 (𝑈 ∈ (𝐼 × 2o) → (𝑀𝑈) ∈ (𝐼 × 2o))
119117, 118syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑀𝑈) ∈ (𝐼 × 2o))
120117, 119s2cld 14584 . . . . . . . . . . . 12 (𝜑 → ⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o))
121 swrdcl 14358 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
12234, 121syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o))
123 ccatass 14293 . . . . . . . . . . . 12 ((((𝐴𝐾) prefix 𝑃) ∈ Word (𝐼 × 2o) ∧ ⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) → ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix 𝑃) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
124116, 120, 122, 123syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix 𝑃) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
125 efgredlemb.6 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
1262, 3, 4, 5efgtval 19329 . . . . . . . . . . . . . 14 (((𝐴𝐾) ∈ 𝑊𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ 𝑈 ∈ (𝐼 × 2o)) → (𝑃(𝑇‘(𝐴𝐾))𝑈) = ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩))
12733, 44, 117, 126syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑃(𝑇‘(𝐴𝐾))𝑈) = ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩))
128 splval 14464 . . . . . . . . . . . . . 14 (((𝐴𝐾) ∈ 𝑊 ∧ (𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ ⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o))) → ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩) = ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))
12933, 44, 44, 120, 128syl13anc 1371 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) splice ⟨𝑃, 𝑃, ⟨“𝑈(𝑀𝑈)”⟩⟩) = ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))
130125, 127, 1293eqtrd 2782 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐴) = ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))
131 efgredlemb.7 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
1322, 3, 4, 5efgtval 19329 . . . . . . . . . . . . . 14 (((𝐵𝐿) ∈ 𝑊𝑄 ∈ (0...(♯‘(𝐵𝐿))) ∧ 𝑉 ∈ (𝐼 × 2o)) → (𝑄(𝑇‘(𝐵𝐿))𝑉) = ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
13329, 14, 92, 132syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑄(𝑇‘(𝐵𝐿))𝑉) = ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩))
134 splval 14464 . . . . . . . . . . . . . 14 (((𝐵𝐿) ∈ 𝑊 ∧ (𝑄 ∈ (0...(♯‘(𝐵𝐿))) ∧ 𝑄 ∈ (0...(♯‘(𝐵𝐿))) ∧ ⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o))) → ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
13529, 14, 14, 102, 134syl13anc 1371 . . . . . . . . . . . . 13 (𝜑 → ((𝐵𝐿) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
136131, 133, 1353eqtrd 2782 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐵) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
13724, 130, 1363eqtr3d 2786 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) prefix 𝑃) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
138114, 124, 1373eqtr2d 2784 . . . . . . . . . 10 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
139 swrdcl 14358 . . . . . . . . . . . 12 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o))
14034, 139syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o))
141 ccatcl 14277 . . . . . . . . . . . 12 ((⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o))
142120, 122, 141syl2anc 584 . . . . . . . . . . 11 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o))
143 ccatass 14293 . . . . . . . . . . 11 ((((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
14496, 140, 142, 143syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
145 swrdcl 14358 . . . . . . . . . . . 12 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
14630, 145syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
147 ccatass 14293 . . . . . . . . . . 11 ((((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) → ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
14832, 102, 146, 147syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((((𝐵𝐿) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
149138, 144, 1483eqtr3d 2786 . . . . . . . . 9 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
150 ccatcl 14277 . . . . . . . . . . 11 ((((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
151140, 142, 150syl2anc 584 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
152 ccatcl 14277 . . . . . . . . . . 11 ((⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) → (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ∈ Word (𝐼 × 2o))
153102, 146, 152syl2anc 584 . . . . . . . . . 10 (𝜑 → (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ∈ Word (𝐼 × 2o))
154 uztrn 12600 . . . . . . . . . . . . . 14 (((♯‘(𝐴𝐾)) ∈ (ℤ𝑃) ∧ 𝑃 ∈ (ℤ𝑄)) → (♯‘(𝐴𝐾)) ∈ (ℤ𝑄))
15546, 109, 154syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐴𝐾)) ∈ (ℤ𝑄))
156 elfzuzb 13250 . . . . . . . . . . . . 13 (𝑄 ∈ (0...(♯‘(𝐴𝐾))) ↔ (𝑄 ∈ (ℤ‘0) ∧ (♯‘(𝐴𝐾)) ∈ (ℤ𝑄)))
15716, 155, 156sylanbrc 583 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (0...(♯‘(𝐴𝐾))))
158 pfxlen 14396 . . . . . . . . . . . 12 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) prefix 𝑄)) = 𝑄)
15934, 157, 158syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴𝐾) prefix 𝑄)) = 𝑄)
160159, 40eqtr4d 2781 . . . . . . . . . 10 (𝜑 → (♯‘((𝐴𝐾) prefix 𝑄)) = (♯‘((𝐵𝐿) prefix 𝑄)))
161 ccatopth 14429 . . . . . . . . . 10 (((((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o)) ∧ (((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ∈ Word (𝐼 × 2o)) ∧ (♯‘((𝐴𝐾) prefix 𝑄)) = (♯‘((𝐵𝐿) prefix 𝑄))) → ((((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))) ↔ (((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))))
16296, 151, 32, 153, 160, 161syl221anc 1380 . . . . . . . . 9 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (((𝐵𝐿) prefix 𝑄) ++ (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))) ↔ (((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))))
163149, 162mpbid 231 . . . . . . . 8 (𝜑 → (((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄) ∧ (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
164163simpld 495 . . . . . . 7 (𝜑 → ((𝐴𝐾) prefix 𝑄) = ((𝐵𝐿) prefix 𝑄))
165164oveq1d 7290 . . . . . 6 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
166 ccatrid 14292 . . . . . . . 8 (((𝐴𝐾) prefix 𝑄) ∈ Word (𝐼 × 2o) → (((𝐴𝐾) prefix 𝑄) ++ ∅) = ((𝐴𝐾) prefix 𝑄))
16796, 166syl 17 . . . . . . 7 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ∅) = ((𝐴𝐾) prefix 𝑄))
168167oveq1d 7290 . . . . . 6 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ∅) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
169165, 168, 173eqtr4rd 2789 . . . . 5 (𝜑 → (𝑆𝐶) = ((((𝐴𝐾) prefix 𝑄) ++ ∅) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
170159eqcomd 2744 . . . . 5 (𝜑𝑄 = (♯‘((𝐴𝐾) prefix 𝑄)))
171 hash0 14082 . . . . . . 7 (♯‘∅) = 0
172171oveq2i 7286 . . . . . 6 (𝑄 + (♯‘∅)) = (𝑄 + 0)
17362addid1d 11175 . . . . . 6 (𝜑 → (𝑄 + 0) = 𝑄)
174172, 173eqtr2id 2791 . . . . 5 (𝜑𝑄 = (𝑄 + (♯‘∅)))
17596, 98, 36, 102, 169, 170, 174splval2 14470 . . . 4 (𝜑 → ((𝑆𝐶) splice ⟨𝑄, 𝑄, ⟨“𝑉(𝑀𝑉)”⟩⟩) = ((((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
176 elfzuzb 13250 . . . . . . . . . . . . . 14 (𝑄 ∈ (0...(𝑄 + 2)) ↔ (𝑄 ∈ (ℤ‘0) ∧ (𝑄 + 2) ∈ (ℤ𝑄)))
17716, 107, 176sylanbrc 583 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (0...(𝑄 + 2)))
178 elfzuzb 13250 . . . . . . . . . . . . . 14 ((𝑄 + 2) ∈ (0...𝑃) ↔ ((𝑄 + 2) ∈ (ℤ‘0) ∧ 𝑃 ∈ (ℤ‘(𝑄 + 2))))
17943, 47, 178sylanbrc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 2) ∈ (0...𝑃))
180 ccatswrd 14381 . . . . . . . . . . . . 13 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 ∈ (0...(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾))))) → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩))
18134, 177, 179, 44, 180syl13anc 1371 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = ((𝐴𝐾) substr ⟨𝑄, 𝑃⟩))
182181oveq1d 7290 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))))
183 swrdcl 14358 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o))
18434, 183syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o))
185 swrdcl 14358 . . . . . . . . . . . . 13 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
18634, 185syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
187 ccatass 14293 . . . . . . . . . . . 12 ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
188184, 186, 142, 187syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))))
189163simprd 496 . . . . . . . . . . 11 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
190182, 188, 1893eqtr3d 2786 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
191 ccatcl 14277 . . . . . . . . . . . 12 ((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
192186, 142, 191syl2anc 584 . . . . . . . . . . 11 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o))
193 swrdlen 14360 . . . . . . . . . . . . . 14 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝑄 + 2) − 𝑄))
19434, 177, 51, 193syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝑄 + 2) − 𝑄))
195 pncan2 11228 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑄 + 2) − 𝑄) = 2)
19662, 69, 195sylancl 586 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 + 2) − 𝑄) = 2)
197194, 196eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = 2)
198 s2len 14602 . . . . . . . . . . . 12 (♯‘⟨“𝑉(𝑀𝑉)”⟩) = 2
199197, 198eqtr4di 2796 . . . . . . . . . . 11 (𝜑 → (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = (♯‘⟨“𝑉(𝑀𝑉)”⟩))
200 ccatopth 14429 . . . . . . . . . . 11 (((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ∈ Word (𝐼 × 2o) ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) ∈ Word (𝐼 × 2o)) ∧ (⟨“𝑉(𝑀𝑉)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) ∧ (♯‘((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = (♯‘⟨“𝑉(𝑀𝑉)”⟩)) → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩ ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
201184, 192, 102, 146, 199, 200syl221anc 1380 . . . . . . . . . 10 (𝜑 → ((((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) ++ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)))) = (⟨“𝑉(𝑀𝑉)”⟩ ++ ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩ ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))))
202190, 201mpbid 231 . . . . . . . . 9 (𝜑 → (((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩ ∧ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩)))
203202simpld 495 . . . . . . . 8 (𝜑 → ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩) = ⟨“𝑉(𝑀𝑉)”⟩)
204203oveq2d 7291 . . . . . . 7 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = (((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩))
205 ccatpfx 14414 . . . . . . . 8 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑄 + 2)) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾)))) → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝐴𝐾) prefix (𝑄 + 2)))
20634, 177, 51, 205syl3anc 1370 . . . . . . 7 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨𝑄, (𝑄 + 2)⟩)) = ((𝐴𝐾) prefix (𝑄 + 2)))
207204, 206eqtr3d 2780 . . . . . 6 (𝜑 → (((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) = ((𝐴𝐾) prefix (𝑄 + 2)))
208207oveq1d 7290 . . . . 5 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐴𝐾) prefix (𝑄 + 2)) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)))
209 ccatpfx 14414 . . . . . 6 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 + 2) ∈ (0...(♯‘(𝐴𝐾))) ∧ (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾)))) → (((𝐴𝐾) prefix (𝑄 + 2)) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) prefix (♯‘(𝐴𝐾))))
21034, 51, 57, 209syl3anc 1370 . . . . 5 (𝜑 → (((𝐴𝐾) prefix (𝑄 + 2)) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) prefix (♯‘(𝐴𝐾))))
211 pfxid 14397 . . . . . 6 ((𝐴𝐾) ∈ Word (𝐼 × 2o) → ((𝐴𝐾) prefix (♯‘(𝐴𝐾))) = (𝐴𝐾))
21234, 211syl 17 . . . . 5 (𝜑 → ((𝐴𝐾) prefix (♯‘(𝐴𝐾))) = (𝐴𝐾))
213208, 210, 2123eqtrd 2782 . . . 4 (𝜑 → ((((𝐴𝐾) prefix 𝑄) ++ ⟨“𝑉(𝑀𝑉)”⟩) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (𝐴𝐾))
21494, 175, 2133eqtrd 2782 . . 3 (𝜑 → (𝑄(𝑇‘(𝑆𝐶))𝑉) = (𝐴𝐾))
2152, 3, 4, 5efgtf 19328 . . . . . . 7 ((𝑆𝐶) ∈ 𝑊 → ((𝑇‘(𝑆𝐶)) = (𝑎 ∈ (0...(♯‘(𝑆𝐶))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆𝐶) splice ⟨𝑎, 𝑎, ⟨“𝑖(𝑀𝑖)”⟩⟩)) ∧ (𝑇‘(𝑆𝐶)):((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o))⟶𝑊))
21613, 215syl 17 . . . . . 6 (𝜑 → ((𝑇‘(𝑆𝐶)) = (𝑎 ∈ (0...(♯‘(𝑆𝐶))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆𝐶) splice ⟨𝑎, 𝑎, ⟨“𝑖(𝑀𝑖)”⟩⟩)) ∧ (𝑇‘(𝑆𝐶)):((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o))⟶𝑊))
217216simprd 496 . . . . 5 (𝜑 → (𝑇‘(𝑆𝐶)):((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o))⟶𝑊)
218217ffnd 6601 . . . 4 (𝜑 → (𝑇‘(𝑆𝐶)) Fn ((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o)))
219 fnovrn 7447 . . . 4 (((𝑇‘(𝑆𝐶)) Fn ((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o)) ∧ 𝑄 ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑉 ∈ (𝐼 × 2o)) → (𝑄(𝑇‘(𝑆𝐶))𝑉) ∈ ran (𝑇‘(𝑆𝐶)))
220218, 91, 92, 219syl3anc 1370 . . 3 (𝜑 → (𝑄(𝑇‘(𝑆𝐶))𝑉) ∈ ran (𝑇‘(𝑆𝐶)))
221214, 220eqeltrrd 2840 . 2 (𝜑 → (𝐴𝐾) ∈ ran (𝑇‘(𝑆𝐶)))
222 uztrn 12600 . . . . . . 7 (((𝑃 − 2) ∈ (ℤ𝑄) ∧ 𝑄 ∈ (ℤ‘0)) → (𝑃 − 2) ∈ (ℤ‘0))
22387, 16, 222syl2anc 584 . . . . . 6 (𝜑 → (𝑃 − 2) ∈ (ℤ‘0))
224 elfzuzb 13250 . . . . . 6 ((𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))) ↔ ((𝑃 − 2) ∈ (ℤ‘0) ∧ (♯‘(𝑆𝐶)) ∈ (ℤ‘(𝑃 − 2))))
225223, 85, 224sylanbrc 583 . . . . 5 (𝜑 → (𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))))
2262, 3, 4, 5efgtval 19329 . . . . 5 (((𝑆𝐶) ∈ 𝑊 ∧ (𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑈 ∈ (𝐼 × 2o)) → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) = ((𝑆𝐶) splice ⟨(𝑃 − 2), (𝑃 − 2), ⟨“𝑈(𝑀𝑈)”⟩⟩))
22713, 225, 117, 226syl3anc 1370 . . . 4 (𝜑 → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) = ((𝑆𝐶) splice ⟨(𝑃 − 2), (𝑃 − 2), ⟨“𝑈(𝑀𝑈)”⟩⟩))
228 pfxcl 14390 . . . . . 6 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) prefix (𝑃 − 2)) ∈ Word (𝐼 × 2o))
22930, 228syl 17 . . . . 5 (𝜑 → ((𝐵𝐿) prefix (𝑃 − 2)) ∈ Word (𝐼 × 2o))
230 swrdcl 14358 . . . . . 6 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
23130, 230syl 17 . . . . 5 (𝜑 → ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
232 ccatswrd 14381 . . . . . . . . . . 11 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ ((𝑄 + 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾))) ∧ (♯‘(𝐴𝐾)) ∈ (0...(♯‘(𝐴𝐾))))) → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))
23334, 179, 44, 57, 232syl13anc 1371 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩))
234202simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))
235 elfzuzb 13250 . . . . . . . . . . . . . . . 16 (𝑄 ∈ (0...(𝑃 − 2)) ↔ (𝑄 ∈ (ℤ‘0) ∧ (𝑃 − 2) ∈ (ℤ𝑄)))
23616, 87, 235sylanbrc 583 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (0...(𝑃 − 2)))
2372, 3, 4, 5, 6, 7, 21, 22, 23, 24, 25, 26, 27, 44, 14, 117, 92, 125, 131efgredlemg 19348 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(𝐴𝐾)) = (♯‘(𝐵𝐿)))
238237, 46eqeltrrd 2840 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘(𝐵𝐿)) ∈ (ℤ𝑃))
239 0le2 12075 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 2
240239a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 2)
24174zred 12426 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℝ)
242 2re 12047 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
243 subge02 11491 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℝ ∧ 2 ∈ ℝ) → (0 ≤ 2 ↔ (𝑃 − 2) ≤ 𝑃))
244241, 242, 243sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0 ≤ 2 ↔ (𝑃 − 2) ≤ 𝑃))
245240, 244mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 2) ≤ 𝑃)
246 eluz2 12588 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘(𝑃 − 2)) ↔ ((𝑃 − 2) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − 2) ≤ 𝑃))
24776, 74, 245, 246syl3anbrc 1342 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ (ℤ‘(𝑃 − 2)))
248 uztrn 12600 . . . . . . . . . . . . . . . . 17 (((♯‘(𝐵𝐿)) ∈ (ℤ𝑃) ∧ 𝑃 ∈ (ℤ‘(𝑃 − 2))) → (♯‘(𝐵𝐿)) ∈ (ℤ‘(𝑃 − 2)))
249238, 247, 248syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘(𝐵𝐿)) ∈ (ℤ‘(𝑃 − 2)))
250 elfzuzb 13250 . . . . . . . . . . . . . . . 16 ((𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿))) ↔ ((𝑃 − 2) ∈ (ℤ‘0) ∧ (♯‘(𝐵𝐿)) ∈ (ℤ‘(𝑃 − 2))))
251223, 249, 250sylanbrc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿))))
252 lencl 14236 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → (♯‘(𝐵𝐿)) ∈ ℕ0)
25330, 252syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘(𝐵𝐿)) ∈ ℕ0)
254253, 54eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘(𝐵𝐿)) ∈ (ℤ‘0))
255 eluzfz2 13264 . . . . . . . . . . . . . . . 16 ((♯‘(𝐵𝐿)) ∈ (ℤ‘0) → (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))
256254, 255syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))
257 ccatswrd 14381 . . . . . . . . . . . . . . 15 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑄 ∈ (0...(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿))) ∧ (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))) → (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))
25830, 236, 251, 256, 257syl13anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨𝑄, (♯‘(𝐵𝐿))⟩))
259234, 258eqtr4d 2781 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)))
260 swrdcl 14358 . . . . . . . . . . . . . . 15 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o))
26130, 260syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o))
262 swrdcl 14358 . . . . . . . . . . . . . . 15 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
26330, 262syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o))
264 swrdlen 14360 . . . . . . . . . . . . . . . 16 (((𝐴𝐾) ∈ Word (𝐼 × 2o) ∧ (𝑄 + 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐴𝐾)))) → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (𝑃 − (𝑄 + 2)))
26534, 179, 44, 264syl3anc 1370 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (𝑃 − (𝑄 + 2)))
266 swrdlen 14360 . . . . . . . . . . . . . . . . 17 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝑃 − 2) − 𝑄))
26730, 236, 251, 266syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝑃 − 2) − 𝑄))
26878, 62, 70sub32d 11364 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃𝑄) − 2) = ((𝑃 − 2) − 𝑄))
26978, 62, 70subsub4d 11363 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃𝑄) − 2) = (𝑃 − (𝑄 + 2)))
270267, 268, 2693eqtr2d 2784 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = (𝑃 − (𝑄 + 2)))
271265, 270eqtr4d 2781 . . . . . . . . . . . . . 14 (𝜑 → (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)))
272 ccatopth 14429 . . . . . . . . . . . . . 14 (((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) ∈ Word (𝐼 × 2o)) ∧ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) ∧ (♯‘((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩)) = (♯‘((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩))) → ((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))))
273186, 142, 261, 263, 271, 272syl221anc 1380 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩))) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)) ↔ (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))))
274259, 273mpbid 231 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∧ (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩)))
275274simpld 495 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) = ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩))
276274simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))
277 elfzuzb 13250 . . . . . . . . . . . . . . . 16 ((𝑃 − 2) ∈ (0...𝑃) ↔ ((𝑃 − 2) ∈ (ℤ‘0) ∧ 𝑃 ∈ (ℤ‘(𝑃 − 2))))
278223, 247, 277sylanbrc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 2) ∈ (0...𝑃))
279 elfzuz 13252 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (0...(♯‘(𝐴𝐾))) → 𝑃 ∈ (ℤ‘0))
28044, 279syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (ℤ‘0))
281 elfzuzb 13250 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (0...(♯‘(𝐵𝐿))) ↔ (𝑃 ∈ (ℤ‘0) ∧ (♯‘(𝐵𝐿)) ∈ (ℤ𝑃)))
282280, 238, 281sylanbrc 583 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (0...(♯‘(𝐵𝐿))))
283 ccatswrd 14381 . . . . . . . . . . . . . . 15 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ ((𝑃 − 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿))) ∧ (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿))))) → (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))
28430, 278, 282, 256, 283syl13anc 1371 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) substr ⟨(𝑃 − 2), (♯‘(𝐵𝐿))⟩))
285276, 284eqtr4d 2781 . . . . . . . . . . . . 13 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
286 swrdcl 14358 . . . . . . . . . . . . . . 15 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
28730, 286syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∈ Word (𝐼 × 2o))
288 s2len 14602 . . . . . . . . . . . . . . 15 (♯‘⟨“𝑈(𝑀𝑈)”⟩) = 2
289 swrdlen 14360 . . . . . . . . . . . . . . . . 17 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑃 − 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = (𝑃 − (𝑃 − 2)))
29030, 278, 282, 289syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = (𝑃 − (𝑃 − 2)))
291 nncan 11250 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑃 − (𝑃 − 2)) = 2)
29278, 69, 291sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − (𝑃 − 2)) = 2)
293290, 292eqtr2d 2779 . . . . . . . . . . . . . . 15 (𝜑 → 2 = (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)))
294288, 293eqtrid 2790 . . . . . . . . . . . . . 14 (𝜑 → (♯‘⟨“𝑈(𝑀𝑈)”⟩) = (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)))
295 ccatopth 14429 . . . . . . . . . . . . . 14 (((⟨“𝑈(𝑀𝑈)”⟩ ∈ Word (𝐼 × 2o) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) ∈ Word (𝐼 × 2o)) ∧ (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) ∧ (♯‘⟨“𝑈(𝑀𝑈)”⟩) = (♯‘((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩))) → ((⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) ↔ (⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
296120, 122, 287, 231, 294, 295syl221anc 1380 . . . . . . . . . . . . 13 (𝜑 → ((⟨“𝑈(𝑀𝑈)”⟩ ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) ↔ (⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
297285, 296mpbid 231 . . . . . . . . . . . 12 (𝜑 → (⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩) ∧ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
298297simprd 496 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩) = ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))
299275, 298oveq12d 7293 . . . . . . . . . 10 (𝜑 → (((𝐴𝐾) substr ⟨(𝑄 + 2), 𝑃⟩) ++ ((𝐴𝐾) substr ⟨𝑃, (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
300233, 299eqtr3d 2780 . . . . . . . . 9 (𝜑 → ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩) = (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
301300oveq2d 7291 . . . . . . . 8 (𝜑 → (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
302 ccatass 14293 . . . . . . . . 9 ((((𝐵𝐿) prefix 𝑄) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ∈ Word (𝐼 × 2o) ∧ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩) ∈ Word (𝐼 × 2o)) → ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
30332, 261, 231, 302syl3anc 1370 . . . . . . . 8 (𝜑 → ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑄) ++ (((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩))))
304301, 303eqtr4d 2781 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix 𝑄) ++ ((𝐴𝐾) substr ⟨(𝑄 + 2), (♯‘(𝐴𝐾))⟩)) = ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
305 ccatpfx 14414 . . . . . . . . 9 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑄 ∈ (0...(𝑃 − 2)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿)))) → (((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝐵𝐿) prefix (𝑃 − 2)))
30630, 236, 251, 305syl3anc 1370 . . . . . . . 8 (𝜑 → (((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) = ((𝐵𝐿) prefix (𝑃 − 2)))
307306oveq1d 7290 . . . . . . 7 (𝜑 → ((((𝐵𝐿) prefix 𝑄) ++ ((𝐵𝐿) substr ⟨𝑄, (𝑃 − 2)⟩)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
30817, 304, 3073eqtrd 2782 . . . . . 6 (𝜑 → (𝑆𝐶) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
309 ccatrid 14292 . . . . . . . 8 (((𝐵𝐿) prefix (𝑃 − 2)) ∈ Word (𝐼 × 2o) → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) = ((𝐵𝐿) prefix (𝑃 − 2)))
310229, 309syl 17 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) = ((𝐵𝐿) prefix (𝑃 − 2)))
311310oveq1d 7290 . . . . . 6 (𝜑 → ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
312308, 311eqtr4d 2781 . . . . 5 (𝜑 → (𝑆𝐶) = ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ∅) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
313 pfxlen 14396 . . . . . . 7 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝐵𝐿)))) → (♯‘((𝐵𝐿) prefix (𝑃 − 2))) = (𝑃 − 2))
31430, 251, 313syl2anc 584 . . . . . 6 (𝜑 → (♯‘((𝐵𝐿) prefix (𝑃 − 2))) = (𝑃 − 2))
315314eqcomd 2744 . . . . 5 (𝜑 → (𝑃 − 2) = (♯‘((𝐵𝐿) prefix (𝑃 − 2))))
316171oveq2i 7286 . . . . . 6 ((𝑃 − 2) + (♯‘∅)) = ((𝑃 − 2) + 0)
31776zcnd 12427 . . . . . . 7 (𝜑 → (𝑃 − 2) ∈ ℂ)
318317addid1d 11175 . . . . . 6 (𝜑 → ((𝑃 − 2) + 0) = (𝑃 − 2))
319316, 318eqtr2id 2791 . . . . 5 (𝜑 → (𝑃 − 2) = ((𝑃 − 2) + (♯‘∅)))
320229, 98, 231, 120, 312, 315, 319splval2 14470 . . . 4 (𝜑 → ((𝑆𝐶) splice ⟨(𝑃 − 2), (𝑃 − 2), ⟨“𝑈(𝑀𝑈)”⟩⟩) = ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
321297simpld 495 . . . . . . . 8 (𝜑 → ⟨“𝑈(𝑀𝑈)”⟩ = ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩))
322321oveq2d 7291 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) = (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)))
323 ccatpfx 14414 . . . . . . . 8 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ (𝑃 − 2) ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿)))) → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = ((𝐵𝐿) prefix 𝑃))
32430, 278, 282, 323syl3anc 1370 . . . . . . 7 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ((𝐵𝐿) substr ⟨(𝑃 − 2), 𝑃⟩)) = ((𝐵𝐿) prefix 𝑃))
325322, 324eqtrd 2778 . . . . . 6 (𝜑 → (((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) = ((𝐵𝐿) prefix 𝑃))
326325oveq1d 7290 . . . . 5 (𝜑 → ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (((𝐵𝐿) prefix 𝑃) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)))
327 ccatpfx 14414 . . . . . 6 (((𝐵𝐿) ∈ Word (𝐼 × 2o) ∧ 𝑃 ∈ (0...(♯‘(𝐵𝐿))) ∧ (♯‘(𝐵𝐿)) ∈ (0...(♯‘(𝐵𝐿)))) → (((𝐵𝐿) prefix 𝑃) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) prefix (♯‘(𝐵𝐿))))
32830, 282, 256, 327syl3anc 1370 . . . . 5 (𝜑 → (((𝐵𝐿) prefix 𝑃) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = ((𝐵𝐿) prefix (♯‘(𝐵𝐿))))
329 pfxid 14397 . . . . . 6 ((𝐵𝐿) ∈ Word (𝐼 × 2o) → ((𝐵𝐿) prefix (♯‘(𝐵𝐿))) = (𝐵𝐿))
33030, 329syl 17 . . . . 5 (𝜑 → ((𝐵𝐿) prefix (♯‘(𝐵𝐿))) = (𝐵𝐿))
331326, 328, 3303eqtrd 2782 . . . 4 (𝜑 → ((((𝐵𝐿) prefix (𝑃 − 2)) ++ ⟨“𝑈(𝑀𝑈)”⟩) ++ ((𝐵𝐿) substr ⟨𝑃, (♯‘(𝐵𝐿))⟩)) = (𝐵𝐿))
332227, 320, 3313eqtrd 2782 . . 3 (𝜑 → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) = (𝐵𝐿))
333 fnovrn 7447 . . . 4 (((𝑇‘(𝑆𝐶)) Fn ((0...(♯‘(𝑆𝐶))) × (𝐼 × 2o)) ∧ (𝑃 − 2) ∈ (0...(♯‘(𝑆𝐶))) ∧ 𝑈 ∈ (𝐼 × 2o)) → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) ∈ ran (𝑇‘(𝑆𝐶)))
334218, 225, 117, 333syl3anc 1370 . . 3 (𝜑 → ((𝑃 − 2)(𝑇‘(𝑆𝐶))𝑈) ∈ ran (𝑇‘(𝑆𝐶)))
335332, 334eqeltrrd 2840 . 2 (𝜑 → (𝐵𝐿) ∈ ran (𝑇‘(𝑆𝐶)))
336221, 335jca 512 1 (𝜑 → ((𝐴𝐾) ∈ ran (𝑇‘(𝑆𝐶)) ∧ (𝐵𝐿) ∈ ran (𝑇‘(𝑆𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  c0 4256  {csn 4561  cop 4567  cotp 4569   ciun 4924   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273   substr csubstr 14353   prefix cpfx 14383   splice csplice 14462  ⟨“cs2 14554   ~FG cefg 19312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-s2 14561
This theorem is referenced by:  efgredlemd  19350
  Copyright terms: Public domain W3C validator