![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnambpcma | Structured version Visualization version GIF version |
Description: ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
Ref | Expression |
---|---|
cnambpcma | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) − 𝐴) = (𝐶 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 11464 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
2 | 1 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
3 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
4 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
5 | 2, 3, 4 | addsubd 11597 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) − 𝐴) = (((𝐴 − 𝐵) − 𝐴) + 𝐶)) |
6 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
7 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
8 | 6, 7, 6 | 3jca 1127 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
9 | 8 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
10 | sub32 11499 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐴) = ((𝐴 − 𝐴) − 𝐵)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐴) = ((𝐴 − 𝐴) − 𝐵)) |
12 | 11 | oveq1d 7427 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) − 𝐴) + 𝐶) = (((𝐴 − 𝐴) − 𝐵) + 𝐶)) |
13 | subcl 11464 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 − 𝐴) ∈ ℂ) | |
14 | 13 | anidms 566 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) ∈ ℂ) |
15 | 14 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − 𝐴) ∈ ℂ) |
16 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
17 | 15, 16, 3 | subadd23d 11598 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐴) − 𝐵) + 𝐶) = ((𝐴 − 𝐴) + (𝐶 − 𝐵))) |
18 | subid 11484 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) | |
19 | 18 | oveq1d 7427 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 𝐴) + (𝐶 − 𝐵)) = (0 + (𝐶 − 𝐵))) |
20 | 19 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐴) + (𝐶 − 𝐵)) = (0 + (𝐶 − 𝐵))) |
21 | subcl 11464 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) | |
22 | 21 | ancoms 458 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
23 | 22 | addlidd 11420 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (0 + (𝐶 − 𝐵)) = (𝐶 − 𝐵)) |
24 | 23 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (0 + (𝐶 − 𝐵)) = (𝐶 − 𝐵)) |
25 | 17, 20, 24 | 3eqtrd 2775 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐴) − 𝐵) + 𝐶) = (𝐶 − 𝐵)) |
26 | 5, 12, 25 | 3eqtrd 2775 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) − 𝐴) = (𝐶 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ℂcc 11112 0cc0 11114 + caddc 11117 − cmin 11449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-sub 11451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |