MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr0o Structured version   Visualization version   GIF version

Theorem fvpr0o 16835
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fvpr0o (𝐴𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)

Proof of Theorem fvpr0o
StepHypRef Expression
1 peano1 7604 . 2 ∅ ∈ ω
2 1n0 8122 . . 3 1o ≠ ∅
32necomi 3073 . 2 ∅ ≠ 1o
4 fvpr1g 6957 . 2 ((∅ ∈ ω ∧ 𝐴𝑉 ∧ ∅ ≠ 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
51, 3, 4mp3an13 1448 1 (𝐴𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wne 3019  c0 4294  {cpr 4572  cop 4576  cfv 6358  ωcom 7583  1oc1o 8098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-res 5570  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fv 6366  df-om 7584  df-1o 8105
This theorem is referenced by:  fvprif  16837  xpsfeq  16839  xpsfrnel2  16840  xpsff1o  16843  xpsle  16855  dmdprdpr  19174  dprdpr  19175  xpstopnlem1  22420  xpstopnlem2  22422  xpsxmetlem  22992  xpsdsval  22994  xpsmet  22995
  Copyright terms: Public domain W3C validator