![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvpr0o | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
fvpr0o | ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7873 | . 2 ⊢ ∅ ∈ ω | |
2 | 1n0 8484 | . . 3 ⊢ 1o ≠ ∅ | |
3 | 2 | necomi 2987 | . 2 ⊢ ∅ ≠ 1o |
4 | fvpr1g 7181 | . 2 ⊢ ((∅ ∈ ω ∧ 𝐴 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) | |
5 | 1, 3, 4 | mp3an13 1448 | 1 ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∅c0 4315 {cpr 4623 〈cop 4627 ‘cfv 6534 ωcom 7849 1oc1o 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fv 6542 df-om 7850 df-1o 8462 |
This theorem is referenced by: fvprif 17508 xpsfeq 17510 xpsfrnel2 17511 xpsff1o 17514 xpsle 17526 dmdprdpr 19963 dprdpr 19964 xpstopnlem1 23637 xpstopnlem2 23639 xpsxmetlem 24209 xpsdsval 24211 xpsmet 24212 |
Copyright terms: Public domain | W3C validator |