| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr0o | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fvpr0o | ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7819 | . 2 ⊢ ∅ ∈ ω | |
| 2 | 1n0 8403 | . . 3 ⊢ 1o ≠ ∅ | |
| 3 | 2 | necomi 2982 | . 2 ⊢ ∅ ≠ 1o |
| 4 | fvpr1g 7124 | . 2 ⊢ ((∅ ∈ ω ∧ 𝐴 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) | |
| 5 | 1, 3, 4 | mp3an13 1454 | 1 ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 {cpr 4575 〈cop 4579 ‘cfv 6481 ωcom 7796 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fv 6489 df-om 7797 df-1o 8385 |
| This theorem is referenced by: fvprif 17465 xpsfeq 17467 xpsfrnel2 17468 xpsff1o 17471 xpsle 17483 dmdprdpr 19963 dprdpr 19964 xpstopnlem1 23724 xpstopnlem2 23726 xpsxmetlem 24294 xpsdsval 24296 xpsmet 24297 |
| Copyright terms: Public domain | W3C validator |