| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr0o | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| fvpr0o | ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7889 | . 2 ⊢ ∅ ∈ ω | |
| 2 | 1n0 8505 | . . 3 ⊢ 1o ≠ ∅ | |
| 3 | 2 | necomi 2987 | . 2 ⊢ ∅ ≠ 1o |
| 4 | fvpr1g 7187 | . 2 ⊢ ((∅ ∈ ω ∧ 𝐴 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) | |
| 5 | 1, 3, 4 | mp3an13 1454 | 1 ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {cpr 4608 〈cop 4612 ‘cfv 6536 ωcom 7866 1oc1o 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fv 6544 df-om 7867 df-1o 8485 |
| This theorem is referenced by: fvprif 17580 xpsfeq 17582 xpsfrnel2 17583 xpsff1o 17586 xpsle 17598 dmdprdpr 20037 dprdpr 20038 xpstopnlem1 23752 xpstopnlem2 23754 xpsxmetlem 24323 xpsdsval 24325 xpsmet 24326 |
| Copyright terms: Public domain | W3C validator |