MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrresb Structured version   Visualization version   GIF version

Theorem dchrresb 26388
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrresb.g 𝐺 = (DChr‘𝑁)
dchrresb.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrresb.b 𝐷 = (Base‘𝐺)
dchrresb.u 𝑈 = (Unit‘𝑍)
dchrresb.x (𝜑𝑋𝐷)
dchrresb.Y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchrresb (𝜑 → ((𝑋𝑈) = (𝑌𝑈) ↔ 𝑋 = 𝑌))

Proof of Theorem dchrresb
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dchrresb.g . . . . 5 𝐺 = (DChr‘𝑁)
2 dchrresb.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrresb.b . . . . 5 𝐷 = (Base‘𝐺)
4 eqid 2739 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
5 dchrresb.x . . . . 5 (𝜑𝑋𝐷)
61, 2, 3, 4, 5dchrf 26371 . . . 4 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
76ffnd 6597 . . 3 (𝜑𝑋 Fn (Base‘𝑍))
8 dchrresb.Y . . . . 5 (𝜑𝑌𝐷)
91, 2, 3, 4, 8dchrf 26371 . . . 4 (𝜑𝑌:(Base‘𝑍)⟶ℂ)
109ffnd 6597 . . 3 (𝜑𝑌 Fn (Base‘𝑍))
11 dchrresb.u . . . . 5 𝑈 = (Unit‘𝑍)
124, 11unitss 19883 . . . 4 𝑈 ⊆ (Base‘𝑍)
13 fvreseq 6911 . . . 4 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ 𝑈 ⊆ (Base‘𝑍)) → ((𝑋𝑈) = (𝑌𝑈) ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
1412, 13mpan2 687 . . 3 ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → ((𝑋𝑈) = (𝑌𝑈) ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
157, 10, 14syl2anc 583 . 2 (𝜑 → ((𝑋𝑈) = (𝑌𝑈) ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
161, 2, 3, 11, 5, 8dchreq 26387 . 2 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
1715, 16bitr4d 281 1 (𝜑 → ((𝑋𝑈) = (𝑌𝑈) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  wss 3891  cres 5590   Fn wfn 6425  cfv 6430  cc 10853  Basecbs 16893  Unitcui 19862  ℤ/nczn 20685  DChrcdchr 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-ec 8474  df-qs 8478  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-0g 17133  df-imas 17200  df-qus 17201  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-nsg 18734  df-eqg 18735  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-subrg 20003  df-lmod 20106  df-lss 20175  df-lsp 20215  df-sra 20415  df-rgmod 20416  df-lidl 20417  df-rsp 20418  df-2idl 20484  df-cnfld 20579  df-zring 20652  df-zn 20689  df-dchr 26362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator