Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc Structured version   Visualization version   GIF version

Theorem rdgprc 35827
Description: The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))

Proof of Theorem rdgprc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘∅))
2 fveq2 6822 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘∅))
31, 2eqeq12d 2747 . . . . . 6 (𝑧 = ∅ → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅)))
43imbi2d 340 . . . . 5 (𝑧 = ∅ → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))))
5 fveq2 6822 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑦))
6 fveq2 6822 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑦))
75, 6eqeq12d 2747 . . . . . 6 (𝑧 = 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
87imbi2d 340 . . . . 5 (𝑧 = 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))))
9 fveq2 6822 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘suc 𝑦))
10 fveq2 6822 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘suc 𝑦))
119, 10eqeq12d 2747 . . . . . 6 (𝑧 = suc 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
1211imbi2d 340 . . . . 5 (𝑧 = suc 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
13 fveq2 6822 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑥))
14 fveq2 6822 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑥))
1513, 14eqeq12d 2747 . . . . . 6 (𝑧 = 𝑥 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
1615imbi2d 340 . . . . 5 (𝑧 = 𝑥 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))))
17 rdgprc0 35826 . . . . . 6 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
18 0ex 5245 . . . . . . 7 ∅ ∈ V
1918rdg0 8340 . . . . . 6 (rec(𝐹, ∅)‘∅) = ∅
2017, 19eqtr4di 2784 . . . . 5 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))
21 fveq2 6822 . . . . . . 7 ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
22 rdgsuc 8343 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, 𝐼)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
23 rdgsuc 8343 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, ∅)‘suc 𝑦) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
2422, 23eqeq12d 2747 . . . . . . 7 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦))))
2521, 24imbitrrid 246 . . . . . 6 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
2625imim2d 57 . . . . 5 (𝑦 ∈ On → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
27 r19.21v 3157 . . . . . 6 (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) ↔ (¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
28 limord 6367 . . . . . . . . 9 (Lim 𝑧 → Ord 𝑧)
29 ordsson 7716 . . . . . . . . 9 (Ord 𝑧𝑧 ⊆ On)
30 rdgfnon 8337 . . . . . . . . . 10 rec(𝐹, 𝐼) Fn On
31 rdgfnon 8337 . . . . . . . . . 10 rec(𝐹, ∅) Fn On
32 fvreseq 6973 . . . . . . . . . 10 (((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) ∧ 𝑧 ⊆ On) → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3330, 31, 32mpanl12 702 . . . . . . . . 9 (𝑧 ⊆ On → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3428, 29, 333syl 18 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
35 rneq 5876 . . . . . . . . . . 11 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ran (rec(𝐹, 𝐼) ↾ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧))
36 df-ima 5629 . . . . . . . . . . 11 (rec(𝐹, 𝐼) “ 𝑧) = ran (rec(𝐹, 𝐼) ↾ 𝑧)
37 df-ima 5629 . . . . . . . . . . 11 (rec(𝐹, ∅) “ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧)
3835, 36, 373eqtr4g 2791 . . . . . . . . . 10 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
3938unieqd 4872 . . . . . . . . 9 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
40 vex 3440 . . . . . . . . . 10 𝑧 ∈ V
41 rdglim 8345 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼) “ 𝑧))
42 rdglim 8345 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅) “ 𝑧))
4341, 42eqeq12d 2747 . . . . . . . . . 10 ((𝑧 ∈ V ∧ Lim 𝑧) → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4440, 43mpan 690 . . . . . . . . 9 (Lim 𝑧 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4539, 44imbitrrid 246 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4634, 45sylbird 260 . . . . . . 7 (Lim 𝑧 → (∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4746imim2d 57 . . . . . 6 (Lim 𝑧 → ((¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
4827, 47biimtrid 242 . . . . 5 (Lim 𝑧 → (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
494, 8, 12, 16, 20, 26, 48tfinds 7790 . . . 4 (𝑥 ∈ On → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5049com12 32 . . 3 𝐼 ∈ V → (𝑥 ∈ On → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5150ralrimiv 3123 . 2 𝐼 ∈ V → ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
52 eqfnfv 6964 . . 3 ((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) → (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5330, 31, 52mp2an 692 . 2 (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
5451, 53sylibr 234 1 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902  c0 4283   cuni 4859  ran crn 5617  cres 5618  cima 5619  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308   Fn wfn 6476  cfv 6481  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  dfrdg3  35829
  Copyright terms: Public domain W3C validator