Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc Structured version   Visualization version   GIF version

Theorem rdgprc 33286
Description: The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))

Proof of Theorem rdgprc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6658 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘∅))
2 fveq2 6658 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘∅))
31, 2eqeq12d 2774 . . . . . 6 (𝑧 = ∅ → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅)))
43imbi2d 344 . . . . 5 (𝑧 = ∅ → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))))
5 fveq2 6658 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑦))
6 fveq2 6658 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑦))
75, 6eqeq12d 2774 . . . . . 6 (𝑧 = 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
87imbi2d 344 . . . . 5 (𝑧 = 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))))
9 fveq2 6658 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘suc 𝑦))
10 fveq2 6658 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘suc 𝑦))
119, 10eqeq12d 2774 . . . . . 6 (𝑧 = suc 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
1211imbi2d 344 . . . . 5 (𝑧 = suc 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
13 fveq2 6658 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑥))
14 fveq2 6658 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑥))
1513, 14eqeq12d 2774 . . . . . 6 (𝑧 = 𝑥 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
1615imbi2d 344 . . . . 5 (𝑧 = 𝑥 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))))
17 rdgprc0 33285 . . . . . 6 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
18 0ex 5177 . . . . . . 7 ∅ ∈ V
1918rdg0 8067 . . . . . 6 (rec(𝐹, ∅)‘∅) = ∅
2017, 19eqtr4di 2811 . . . . 5 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))
21 fveq2 6658 . . . . . . 7 ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
22 rdgsuc 8070 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, 𝐼)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
23 rdgsuc 8070 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, ∅)‘suc 𝑦) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
2422, 23eqeq12d 2774 . . . . . . 7 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦))))
2521, 24syl5ibr 249 . . . . . 6 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
2625imim2d 57 . . . . 5 (𝑦 ∈ On → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
27 r19.21v 3106 . . . . . 6 (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) ↔ (¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
28 limord 6228 . . . . . . . . 9 (Lim 𝑧 → Ord 𝑧)
29 ordsson 7503 . . . . . . . . 9 (Ord 𝑧𝑧 ⊆ On)
30 rdgfnon 8064 . . . . . . . . . 10 rec(𝐹, 𝐼) Fn On
31 rdgfnon 8064 . . . . . . . . . 10 rec(𝐹, ∅) Fn On
32 fvreseq 6801 . . . . . . . . . 10 (((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) ∧ 𝑧 ⊆ On) → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3330, 31, 32mpanl12 701 . . . . . . . . 9 (𝑧 ⊆ On → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3428, 29, 333syl 18 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
35 rneq 5777 . . . . . . . . . . 11 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ran (rec(𝐹, 𝐼) ↾ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧))
36 df-ima 5537 . . . . . . . . . . 11 (rec(𝐹, 𝐼) “ 𝑧) = ran (rec(𝐹, 𝐼) ↾ 𝑧)
37 df-ima 5537 . . . . . . . . . . 11 (rec(𝐹, ∅) “ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧)
3835, 36, 373eqtr4g 2818 . . . . . . . . . 10 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
3938unieqd 4812 . . . . . . . . 9 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
40 vex 3413 . . . . . . . . . 10 𝑧 ∈ V
41 rdglim 8072 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼) “ 𝑧))
42 rdglim 8072 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅) “ 𝑧))
4341, 42eqeq12d 2774 . . . . . . . . . 10 ((𝑧 ∈ V ∧ Lim 𝑧) → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4440, 43mpan 689 . . . . . . . . 9 (Lim 𝑧 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4539, 44syl5ibr 249 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4634, 45sylbird 263 . . . . . . 7 (Lim 𝑧 → (∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4746imim2d 57 . . . . . 6 (Lim 𝑧 → ((¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
4827, 47syl5bi 245 . . . . 5 (Lim 𝑧 → (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
494, 8, 12, 16, 20, 26, 48tfinds 7573 . . . 4 (𝑥 ∈ On → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5049com12 32 . . 3 𝐼 ∈ V → (𝑥 ∈ On → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5150ralrimiv 3112 . 2 𝐼 ∈ V → ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
52 eqfnfv 6793 . . 3 ((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) → (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5330, 31, 52mp2an 691 . 2 (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
5451, 53sylibr 237 1 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  Vcvv 3409  wss 3858  c0 4225   cuni 4798  ran crn 5525  cres 5526  cima 5527  Ord word 6168  Oncon0 6169  Lim wlim 6170  suc csuc 6171   Fn wfn 6330  cfv 6335  reccrdg 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056
This theorem is referenced by:  dfrdg3  33288
  Copyright terms: Public domain W3C validator