Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = ∅ → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘∅)) |
2 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = ∅ → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘∅)) |
3 | 1, 2 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = ∅ → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))) |
4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = ∅ → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹,
∅)‘∅)))) |
5 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑦)) |
6 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑦)) |
7 | 5, 6 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
8 | 7 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))) |
9 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = suc 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘suc 𝑦)) |
10 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = suc 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘suc 𝑦)) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = suc 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))) |
12 | 11 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = suc 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))) |
13 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑥)) |
14 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑥)) |
15 | 13, 14 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
16 | 15 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = 𝑥 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))) |
17 | | rdgprc0 33675 |
. . . . . 6
⊢ (¬
𝐼 ∈ V →
(rec(𝐹, 𝐼)‘∅) = ∅) |
18 | | 0ex 5226 |
. . . . . . 7
⊢ ∅
∈ V |
19 | 18 | rdg0 8223 |
. . . . . 6
⊢
(rec(𝐹,
∅)‘∅) = ∅ |
20 | 17, 19 | eqtr4di 2797 |
. . . . 5
⊢ (¬
𝐼 ∈ V →
(rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅)) |
21 | | fveq2 6756 |
. . . . . . 7
⊢
((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦))) |
22 | | rdgsuc 8226 |
. . . . . . . 8
⊢ (𝑦 ∈ On → (rec(𝐹, 𝐼)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐼)‘𝑦))) |
23 | | rdgsuc 8226 |
. . . . . . . 8
⊢ (𝑦 ∈ On → (rec(𝐹, ∅)‘suc 𝑦) = (𝐹‘(rec(𝐹, ∅)‘𝑦))) |
24 | 22, 23 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))) |
25 | 21, 24 | syl5ibr 245 |
. . . . . 6
⊢ (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))) |
26 | 25 | imim2d 57 |
. . . . 5
⊢ (𝑦 ∈ On → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))) |
27 | | r19.21v 3100 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑧 (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) ↔ (¬ 𝐼 ∈ V → ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
28 | | limord 6310 |
. . . . . . . . 9
⊢ (Lim
𝑧 → Ord 𝑧) |
29 | | ordsson 7610 |
. . . . . . . . 9
⊢ (Ord
𝑧 → 𝑧 ⊆ On) |
30 | | rdgfnon 8220 |
. . . . . . . . . 10
⊢ rec(𝐹, 𝐼) Fn On |
31 | | rdgfnon 8220 |
. . . . . . . . . 10
⊢ rec(𝐹, ∅) Fn
On |
32 | | fvreseq 6899 |
. . . . . . . . . 10
⊢
(((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) ∧ 𝑧 ⊆ On) → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
33 | 30, 31, 32 | mpanl12 698 |
. . . . . . . . 9
⊢ (𝑧 ⊆ On → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
34 | 28, 29, 33 | 3syl 18 |
. . . . . . . 8
⊢ (Lim
𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
35 | | rneq 5834 |
. . . . . . . . . . 11
⊢
((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ran (rec(𝐹, 𝐼) ↾ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧)) |
36 | | df-ima 5593 |
. . . . . . . . . . 11
⊢
(rec(𝐹, 𝐼) “ 𝑧) = ran (rec(𝐹, 𝐼) ↾ 𝑧) |
37 | | df-ima 5593 |
. . . . . . . . . . 11
⊢
(rec(𝐹, ∅)
“ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧) |
38 | 35, 36, 37 | 3eqtr4g 2804 |
. . . . . . . . . 10
⊢
((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)) |
39 | 38 | unieqd 4850 |
. . . . . . . . 9
⊢
((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ∪
(rec(𝐹, 𝐼) “ 𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧)) |
40 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
41 | | rdglim 8228 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = ∪ (rec(𝐹, 𝐼) “ 𝑧)) |
42 | | rdglim 8228 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, ∅)‘𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧)) |
43 | 41, 42 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ ∪
(rec(𝐹, 𝐼) “ 𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧))) |
44 | 40, 43 | mpan 686 |
. . . . . . . . 9
⊢ (Lim
𝑧 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ ∪
(rec(𝐹, 𝐼) “ 𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧))) |
45 | 39, 44 | syl5ibr 245 |
. . . . . . . 8
⊢ (Lim
𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))) |
46 | 34, 45 | sylbird 259 |
. . . . . . 7
⊢ (Lim
𝑧 → (∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))) |
47 | 46 | imim2d 57 |
. . . . . 6
⊢ (Lim
𝑧 → ((¬ 𝐼 ∈ V → ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))) |
48 | 27, 47 | syl5bi 241 |
. . . . 5
⊢ (Lim
𝑧 → (∀𝑦 ∈ 𝑧 (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))) |
49 | 4, 8, 12, 16, 20, 26, 48 | tfinds 7681 |
. . . 4
⊢ (𝑥 ∈ On → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
50 | 49 | com12 32 |
. . 3
⊢ (¬
𝐼 ∈ V → (𝑥 ∈ On → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
51 | 50 | ralrimiv 3106 |
. 2
⊢ (¬
𝐼 ∈ V →
∀𝑥 ∈ On
(rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)) |
52 | | eqfnfv 6891 |
. . 3
⊢
((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) →
(rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
53 | 30, 31, 52 | mp2an 688 |
. 2
⊢
(rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)) |
54 | 51, 53 | sylibr 233 |
1
⊢ (¬
𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) |