Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc Structured version   Visualization version   GIF version

Theorem rdgprc 34766
Description: The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))

Proof of Theorem rdgprc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘∅))
2 fveq2 6892 . . . . . . 7 (𝑧 = ∅ → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘∅))
31, 2eqeq12d 2749 . . . . . 6 (𝑧 = ∅ → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅)))
43imbi2d 341 . . . . 5 (𝑧 = ∅ → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))))
5 fveq2 6892 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑦))
6 fveq2 6892 . . . . . . 7 (𝑧 = 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑦))
75, 6eqeq12d 2749 . . . . . 6 (𝑧 = 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
87imbi2d 341 . . . . 5 (𝑧 = 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))))
9 fveq2 6892 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘suc 𝑦))
10 fveq2 6892 . . . . . . 7 (𝑧 = suc 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘suc 𝑦))
119, 10eqeq12d 2749 . . . . . 6 (𝑧 = suc 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
1211imbi2d 341 . . . . 5 (𝑧 = suc 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
13 fveq2 6892 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑥))
14 fveq2 6892 . . . . . . 7 (𝑧 = 𝑥 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑥))
1513, 14eqeq12d 2749 . . . . . 6 (𝑧 = 𝑥 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
1615imbi2d 341 . . . . 5 (𝑧 = 𝑥 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))))
17 rdgprc0 34765 . . . . . 6 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅)
18 0ex 5308 . . . . . . 7 ∅ ∈ V
1918rdg0 8421 . . . . . 6 (rec(𝐹, ∅)‘∅) = ∅
2017, 19eqtr4di 2791 . . . . 5 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))
21 fveq2 6892 . . . . . . 7 ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
22 rdgsuc 8424 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, 𝐼)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐼)‘𝑦)))
23 rdgsuc 8424 . . . . . . . 8 (𝑦 ∈ On → (rec(𝐹, ∅)‘suc 𝑦) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))
2422, 23eqeq12d 2749 . . . . . . 7 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦))))
2521, 24imbitrrid 245 . . . . . 6 (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))
2625imim2d 57 . . . . 5 (𝑦 ∈ On → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))))
27 r19.21v 3180 . . . . . 6 (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) ↔ (¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
28 limord 6425 . . . . . . . . 9 (Lim 𝑧 → Ord 𝑧)
29 ordsson 7770 . . . . . . . . 9 (Ord 𝑧𝑧 ⊆ On)
30 rdgfnon 8418 . . . . . . . . . 10 rec(𝐹, 𝐼) Fn On
31 rdgfnon 8418 . . . . . . . . . 10 rec(𝐹, ∅) Fn On
32 fvreseq 7042 . . . . . . . . . 10 (((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) ∧ 𝑧 ⊆ On) → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3330, 31, 32mpanl12 701 . . . . . . . . 9 (𝑧 ⊆ On → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
3428, 29, 333syl 18 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))
35 rneq 5936 . . . . . . . . . . 11 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ran (rec(𝐹, 𝐼) ↾ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧))
36 df-ima 5690 . . . . . . . . . . 11 (rec(𝐹, 𝐼) “ 𝑧) = ran (rec(𝐹, 𝐼) ↾ 𝑧)
37 df-ima 5690 . . . . . . . . . . 11 (rec(𝐹, ∅) “ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧)
3835, 36, 373eqtr4g 2798 . . . . . . . . . 10 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
3938unieqd 4923 . . . . . . . . 9 ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧))
40 vex 3479 . . . . . . . . . 10 𝑧 ∈ V
41 rdglim 8426 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼) “ 𝑧))
42 rdglim 8426 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅) “ 𝑧))
4341, 42eqeq12d 2749 . . . . . . . . . 10 ((𝑧 ∈ V ∧ Lim 𝑧) → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4440, 43mpan 689 . . . . . . . . 9 (Lim 𝑧 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)))
4539, 44imbitrrid 245 . . . . . . . 8 (Lim 𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4634, 45sylbird 260 . . . . . . 7 (Lim 𝑧 → (∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))
4746imim2d 57 . . . . . 6 (Lim 𝑧 → ((¬ 𝐼 ∈ V → ∀𝑦𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
4827, 47biimtrid 241 . . . . 5 (Lim 𝑧 → (∀𝑦𝑧𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))))
494, 8, 12, 16, 20, 26, 48tfinds 7849 . . . 4 (𝑥 ∈ On → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5049com12 32 . . 3 𝐼 ∈ V → (𝑥 ∈ On → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5150ralrimiv 3146 . 2 𝐼 ∈ V → ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
52 eqfnfv 7033 . . 3 ((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) → (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))
5330, 31, 52mp2an 691 . 2 (rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))
5451, 53sylibr 233 1 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3949  c0 4323   cuni 4909  ran crn 5678  cres 5679  cima 5680  Ord word 6364  Oncon0 6365  Lim wlim 6366  suc csuc 6367   Fn wfn 6539  cfv 6544  reccrdg 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410
This theorem is referenced by:  dfrdg3  34768
  Copyright terms: Public domain W3C validator