| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = ∅ → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘∅)) |
| 2 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = ∅ → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘∅)) |
| 3 | 1, 2 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑧 = ∅ → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅))) |
| 4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = ∅ → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = (rec(𝐹,
∅)‘∅)))) |
| 5 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑦)) |
| 6 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑦)) |
| 7 | 5, 6 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
| 8 | 7 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)))) |
| 9 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = suc 𝑦 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘suc 𝑦)) |
| 10 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = suc 𝑦 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘suc 𝑦)) |
| 11 | 9, 10 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑧 = suc 𝑦 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))) |
| 12 | 11 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = suc 𝑦 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))) |
| 13 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, 𝐼)‘𝑥)) |
| 14 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (rec(𝐹, ∅)‘𝑧) = (rec(𝐹, ∅)‘𝑥)) |
| 15 | 13, 14 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
| 16 | 15 | imbi2d 340 |
. . . . 5
⊢ (𝑧 = 𝑥 → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)) ↔ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)))) |
| 17 | | rdgprc0 35794 |
. . . . . 6
⊢ (¬
𝐼 ∈ V →
(rec(𝐹, 𝐼)‘∅) = ∅) |
| 18 | | 0ex 5307 |
. . . . . . 7
⊢ ∅
∈ V |
| 19 | 18 | rdg0 8461 |
. . . . . 6
⊢
(rec(𝐹,
∅)‘∅) = ∅ |
| 20 | 17, 19 | eqtr4di 2795 |
. . . . 5
⊢ (¬
𝐼 ∈ V →
(rec(𝐹, 𝐼)‘∅) = (rec(𝐹, ∅)‘∅)) |
| 21 | | fveq2 6906 |
. . . . . . 7
⊢
((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦))) |
| 22 | | rdgsuc 8464 |
. . . . . . . 8
⊢ (𝑦 ∈ On → (rec(𝐹, 𝐼)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐼)‘𝑦))) |
| 23 | | rdgsuc 8464 |
. . . . . . . 8
⊢ (𝑦 ∈ On → (rec(𝐹, ∅)‘suc 𝑦) = (𝐹‘(rec(𝐹, ∅)‘𝑦))) |
| 24 | 22, 23 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦) ↔ (𝐹‘(rec(𝐹, 𝐼)‘𝑦)) = (𝐹‘(rec(𝐹, ∅)‘𝑦)))) |
| 25 | 21, 24 | imbitrrid 246 |
. . . . . 6
⊢ (𝑦 ∈ On → ((rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦))) |
| 26 | 25 | imim2d 57 |
. . . . 5
⊢ (𝑦 ∈ On → ((¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘suc 𝑦) = (rec(𝐹, ∅)‘suc 𝑦)))) |
| 27 | | r19.21v 3180 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑧 (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) ↔ (¬ 𝐼 ∈ V → ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
| 28 | | limord 6444 |
. . . . . . . . 9
⊢ (Lim
𝑧 → Ord 𝑧) |
| 29 | | ordsson 7803 |
. . . . . . . . 9
⊢ (Ord
𝑧 → 𝑧 ⊆ On) |
| 30 | | rdgfnon 8458 |
. . . . . . . . . 10
⊢ rec(𝐹, 𝐼) Fn On |
| 31 | | rdgfnon 8458 |
. . . . . . . . . 10
⊢ rec(𝐹, ∅) Fn
On |
| 32 | | fvreseq 7060 |
. . . . . . . . . 10
⊢
(((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) ∧ 𝑧 ⊆ On) → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
| 33 | 30, 31, 32 | mpanl12 702 |
. . . . . . . . 9
⊢ (𝑧 ⊆ On → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
| 34 | 28, 29, 33 | 3syl 18 |
. . . . . . . 8
⊢ (Lim
𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) ↔ ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦))) |
| 35 | | rneq 5947 |
. . . . . . . . . . 11
⊢
((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ran (rec(𝐹, 𝐼) ↾ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧)) |
| 36 | | df-ima 5698 |
. . . . . . . . . . 11
⊢
(rec(𝐹, 𝐼) “ 𝑧) = ran (rec(𝐹, 𝐼) ↾ 𝑧) |
| 37 | | df-ima 5698 |
. . . . . . . . . . 11
⊢
(rec(𝐹, ∅)
“ 𝑧) = ran (rec(𝐹, ∅) ↾ 𝑧) |
| 38 | 35, 36, 37 | 3eqtr4g 2802 |
. . . . . . . . . 10
⊢
((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼) “ 𝑧) = (rec(𝐹, ∅) “ 𝑧)) |
| 39 | 38 | unieqd 4920 |
. . . . . . . . 9
⊢
((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → ∪
(rec(𝐹, 𝐼) “ 𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧)) |
| 40 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 41 | | rdglim 8466 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = ∪ (rec(𝐹, 𝐼) “ 𝑧)) |
| 42 | | rdglim 8466 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → (rec(𝐹, ∅)‘𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧)) |
| 43 | 41, 42 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ ∪
(rec(𝐹, 𝐼) “ 𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧))) |
| 44 | 40, 43 | mpan 690 |
. . . . . . . . 9
⊢ (Lim
𝑧 → ((rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧) ↔ ∪
(rec(𝐹, 𝐼) “ 𝑧) = ∪ (rec(𝐹, ∅) “ 𝑧))) |
| 45 | 39, 44 | imbitrrid 246 |
. . . . . . . 8
⊢ (Lim
𝑧 → ((rec(𝐹, 𝐼) ↾ 𝑧) = (rec(𝐹, ∅) ↾ 𝑧) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))) |
| 46 | 34, 45 | sylbird 260 |
. . . . . . 7
⊢ (Lim
𝑧 → (∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦) → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧))) |
| 47 | 46 | imim2d 57 |
. . . . . 6
⊢ (Lim
𝑧 → ((¬ 𝐼 ∈ V → ∀𝑦 ∈ 𝑧 (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))) |
| 48 | 27, 47 | biimtrid 242 |
. . . . 5
⊢ (Lim
𝑧 → (∀𝑦 ∈ 𝑧 (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑦) = (rec(𝐹, ∅)‘𝑦)) → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑧) = (rec(𝐹, ∅)‘𝑧)))) |
| 49 | 4, 8, 12, 16, 20, 26, 48 | tfinds 7881 |
. . . 4
⊢ (𝑥 ∈ On → (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
| 50 | 49 | com12 32 |
. . 3
⊢ (¬
𝐼 ∈ V → (𝑥 ∈ On → (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
| 51 | 50 | ralrimiv 3145 |
. 2
⊢ (¬
𝐼 ∈ V →
∀𝑥 ∈ On
(rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)) |
| 52 | | eqfnfv 7051 |
. . 3
⊢
((rec(𝐹, 𝐼) Fn On ∧ rec(𝐹, ∅) Fn On) →
(rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥))) |
| 53 | 30, 31, 52 | mp2an 692 |
. 2
⊢
(rec(𝐹, 𝐼) = rec(𝐹, ∅) ↔ ∀𝑥 ∈ On (rec(𝐹, 𝐼)‘𝑥) = (rec(𝐹, ∅)‘𝑥)) |
| 54 | 51, 53 | sylibr 234 |
1
⊢ (¬
𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) |