MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat0d Structured version   Visualization version   GIF version

Theorem chpmat0d 21891
Description: The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.)
Hypothesis
Ref Expression
chpmat0.c 𝐶 = (∅ CharPlyMat 𝑅)
Assertion
Ref Expression
chpmat0d (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1𝑅)))

Proof of Theorem chpmat0d
StepHypRef Expression
1 0fin 8916 . . 3 ∅ ∈ Fin
2 id 22 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
3 0ex 5226 . . . . 5 ∅ ∈ V
43snid 4594 . . . 4 ∅ ∈ {∅}
5 mat0dimbas0 21523 . . . 4 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
64, 5eleqtrrid 2846 . . 3 (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat 𝑅)))
7 chpmat0.c . . . 4 𝐶 = (∅ CharPlyMat 𝑅)
8 eqid 2738 . . . 4 (∅ Mat 𝑅) = (∅ Mat 𝑅)
9 eqid 2738 . . . 4 (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅))
10 eqid 2738 . . . 4 (Poly1𝑅) = (Poly1𝑅)
11 eqid 2738 . . . 4 (∅ Mat (Poly1𝑅)) = (∅ Mat (Poly1𝑅))
12 eqid 2738 . . . 4 (∅ maDet (Poly1𝑅)) = (∅ maDet (Poly1𝑅))
13 eqid 2738 . . . 4 (-g‘(∅ Mat (Poly1𝑅))) = (-g‘(∅ Mat (Poly1𝑅)))
14 eqid 2738 . . . 4 (var1𝑅) = (var1𝑅)
15 eqid 2738 . . . 4 ( ·𝑠 ‘(∅ Mat (Poly1𝑅))) = ( ·𝑠 ‘(∅ Mat (Poly1𝑅)))
16 eqid 2738 . . . 4 (∅ matToPolyMat 𝑅) = (∅ matToPolyMat 𝑅)
17 eqid 2738 . . . 4 (1r‘(∅ Mat (Poly1𝑅))) = (1r‘(∅ Mat (Poly1𝑅)))
187, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17chpmatval 21888 . . 3 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring ∧ ∅ ∈ (Base‘(∅ Mat 𝑅))) → (𝐶‘∅) = ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
191, 2, 6, 18mp3an2i 1464 . 2 (𝑅 ∈ Ring → (𝐶‘∅) = ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2010ply1ring 21329 . . . 4 (𝑅 ∈ Ring → (Poly1𝑅) ∈ Ring)
21 mdet0pr 21649 . . . . 5 ((Poly1𝑅) ∈ Ring → (∅ maDet (Poly1𝑅)) = {⟨∅, (1r‘(Poly1𝑅))⟩})
2221fveq1d 6758 . . . 4 ((Poly1𝑅) ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2320, 22syl 17 . . 3 (𝑅 ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2411mat0dimid 21525 . . . . . . . . . 10 ((Poly1𝑅) ∈ Ring → (1r‘(∅ Mat (Poly1𝑅))) = ∅)
2520, 24syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (1r‘(∅ Mat (Poly1𝑅))) = ∅)
2625oveq2d 7271 . . . . . . . 8 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅)))) = ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅))
27 eqid 2738 . . . . . . . . . 10 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
2814, 10, 27vr1cl 21298 . . . . . . . . 9 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘(Poly1𝑅)))
2911mat0dimscm 21526 . . . . . . . . 9 (((Poly1𝑅) ∈ Ring ∧ (var1𝑅) ∈ (Base‘(Poly1𝑅))) → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅) = ∅)
3020, 28, 29syl2anc 583 . . . . . . . 8 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅) = ∅)
3126, 30eqtrd 2778 . . . . . . 7 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅)))) = ∅)
32 d0mat2pmat 21795 . . . . . . 7 (𝑅 ∈ Ring → ((∅ matToPolyMat 𝑅)‘∅) = ∅)
3331, 32oveq12d 7273 . . . . . 6 (𝑅 ∈ Ring → (((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅)) = (∅(-g‘(∅ Mat (Poly1𝑅)))∅))
3411matring 21500 . . . . . . . . 9 ((∅ ∈ Fin ∧ (Poly1𝑅) ∈ Ring) → (∅ Mat (Poly1𝑅)) ∈ Ring)
351, 20, 34sylancr 586 . . . . . . . 8 (𝑅 ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Ring)
36 ringgrp 19703 . . . . . . . 8 ((∅ Mat (Poly1𝑅)) ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Grp)
3735, 36syl 17 . . . . . . 7 (𝑅 ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Grp)
38 mat0dimbas0 21523 . . . . . . . . 9 ((Poly1𝑅) ∈ Ring → (Base‘(∅ Mat (Poly1𝑅))) = {∅})
3920, 38syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘(∅ Mat (Poly1𝑅))) = {∅})
404, 39eleqtrrid 2846 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat (Poly1𝑅))))
41 eqid 2738 . . . . . . . 8 (Base‘(∅ Mat (Poly1𝑅))) = (Base‘(∅ Mat (Poly1𝑅)))
42 eqid 2738 . . . . . . . 8 (0g‘(∅ Mat (Poly1𝑅))) = (0g‘(∅ Mat (Poly1𝑅)))
4341, 42, 13grpsubid 18574 . . . . . . 7 (((∅ Mat (Poly1𝑅)) ∈ Grp ∧ ∅ ∈ (Base‘(∅ Mat (Poly1𝑅)))) → (∅(-g‘(∅ Mat (Poly1𝑅)))∅) = (0g‘(∅ Mat (Poly1𝑅))))
4437, 40, 43syl2anc 583 . . . . . 6 (𝑅 ∈ Ring → (∅(-g‘(∅ Mat (Poly1𝑅)))∅) = (0g‘(∅ Mat (Poly1𝑅))))
4533, 44eqtrd 2778 . . . . 5 (𝑅 ∈ Ring → (((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅)) = (0g‘(∅ Mat (Poly1𝑅))))
4645fveq2d 6760 . . . 4 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))))
4711mat0dim0 21524 . . . . . . 7 ((Poly1𝑅) ∈ Ring → (0g‘(∅ Mat (Poly1𝑅))) = ∅)
4820, 47syl 17 . . . . . 6 (𝑅 ∈ Ring → (0g‘(∅ Mat (Poly1𝑅))) = ∅)
4948fveq2d 6760 . . . . 5 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘∅))
50 fvex 6769 . . . . . 6 (1r‘(Poly1𝑅)) ∈ V
513, 50fvsn 7035 . . . . 5 ({⟨∅, (1r‘(Poly1𝑅))⟩}‘∅) = (1r‘(Poly1𝑅))
5249, 51eqtrdi 2795 . . . 4 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))) = (1r‘(Poly1𝑅)))
5346, 52eqtrd 2778 . . 3 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = (1r‘(Poly1𝑅)))
5423, 53eqtrd 2778 . 2 (𝑅 ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = (1r‘(Poly1𝑅)))
5519, 54eqtrd 2778 1 (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  c0 4253  {csn 4558  cop 4564  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  1rcur 19652  Ringcrg 19698  var1cv1 21257  Poly1cpl1 21258   Mat cmat 21464   maDet cmdat 21641   matToPolyMat cmat2pmat 21761   CharPlyMat cchpmat 21883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014  df-evpm 19015  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-dsmm 20849  df-frlm 20864  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-mamu 21443  df-mat 21465  df-mdet 21642  df-mat2pmat 21764  df-chpmat 21884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator