MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat0d Structured version   Visualization version   GIF version

Theorem chpmat0d 22856
Description: The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.)
Hypothesis
Ref Expression
chpmat0.c 𝐶 = (∅ CharPlyMat 𝑅)
Assertion
Ref Expression
chpmat0d (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1𝑅)))

Proof of Theorem chpmat0d
StepHypRef Expression
1 0fi 9081 . . 3 ∅ ∈ Fin
2 id 22 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
3 0ex 5313 . . . . 5 ∅ ∈ V
43snid 4667 . . . 4 ∅ ∈ {∅}
5 mat0dimbas0 22488 . . . 4 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
64, 5eleqtrrid 2846 . . 3 (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat 𝑅)))
7 chpmat0.c . . . 4 𝐶 = (∅ CharPlyMat 𝑅)
8 eqid 2735 . . . 4 (∅ Mat 𝑅) = (∅ Mat 𝑅)
9 eqid 2735 . . . 4 (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅))
10 eqid 2735 . . . 4 (Poly1𝑅) = (Poly1𝑅)
11 eqid 2735 . . . 4 (∅ Mat (Poly1𝑅)) = (∅ Mat (Poly1𝑅))
12 eqid 2735 . . . 4 (∅ maDet (Poly1𝑅)) = (∅ maDet (Poly1𝑅))
13 eqid 2735 . . . 4 (-g‘(∅ Mat (Poly1𝑅))) = (-g‘(∅ Mat (Poly1𝑅)))
14 eqid 2735 . . . 4 (var1𝑅) = (var1𝑅)
15 eqid 2735 . . . 4 ( ·𝑠 ‘(∅ Mat (Poly1𝑅))) = ( ·𝑠 ‘(∅ Mat (Poly1𝑅)))
16 eqid 2735 . . . 4 (∅ matToPolyMat 𝑅) = (∅ matToPolyMat 𝑅)
17 eqid 2735 . . . 4 (1r‘(∅ Mat (Poly1𝑅))) = (1r‘(∅ Mat (Poly1𝑅)))
187, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17chpmatval 22853 . . 3 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring ∧ ∅ ∈ (Base‘(∅ Mat 𝑅))) → (𝐶‘∅) = ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
191, 2, 6, 18mp3an2i 1465 . 2 (𝑅 ∈ Ring → (𝐶‘∅) = ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2010ply1ring 22265 . . . 4 (𝑅 ∈ Ring → (Poly1𝑅) ∈ Ring)
21 mdet0pr 22614 . . . . 5 ((Poly1𝑅) ∈ Ring → (∅ maDet (Poly1𝑅)) = {⟨∅, (1r‘(Poly1𝑅))⟩})
2221fveq1d 6909 . . . 4 ((Poly1𝑅) ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2320, 22syl 17 . . 3 (𝑅 ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2411mat0dimid 22490 . . . . . . . . . 10 ((Poly1𝑅) ∈ Ring → (1r‘(∅ Mat (Poly1𝑅))) = ∅)
2520, 24syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (1r‘(∅ Mat (Poly1𝑅))) = ∅)
2625oveq2d 7447 . . . . . . . 8 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅)))) = ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅))
27 eqid 2735 . . . . . . . . . 10 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
2814, 10, 27vr1cl 22235 . . . . . . . . 9 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘(Poly1𝑅)))
2911mat0dimscm 22491 . . . . . . . . 9 (((Poly1𝑅) ∈ Ring ∧ (var1𝑅) ∈ (Base‘(Poly1𝑅))) → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅) = ∅)
3020, 28, 29syl2anc 584 . . . . . . . 8 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅) = ∅)
3126, 30eqtrd 2775 . . . . . . 7 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅)))) = ∅)
32 d0mat2pmat 22760 . . . . . . 7 (𝑅 ∈ Ring → ((∅ matToPolyMat 𝑅)‘∅) = ∅)
3331, 32oveq12d 7449 . . . . . 6 (𝑅 ∈ Ring → (((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅)) = (∅(-g‘(∅ Mat (Poly1𝑅)))∅))
3411matring 22465 . . . . . . . . 9 ((∅ ∈ Fin ∧ (Poly1𝑅) ∈ Ring) → (∅ Mat (Poly1𝑅)) ∈ Ring)
351, 20, 34sylancr 587 . . . . . . . 8 (𝑅 ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Ring)
36 ringgrp 20256 . . . . . . . 8 ((∅ Mat (Poly1𝑅)) ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Grp)
3735, 36syl 17 . . . . . . 7 (𝑅 ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Grp)
38 mat0dimbas0 22488 . . . . . . . . 9 ((Poly1𝑅) ∈ Ring → (Base‘(∅ Mat (Poly1𝑅))) = {∅})
3920, 38syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘(∅ Mat (Poly1𝑅))) = {∅})
404, 39eleqtrrid 2846 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat (Poly1𝑅))))
41 eqid 2735 . . . . . . . 8 (Base‘(∅ Mat (Poly1𝑅))) = (Base‘(∅ Mat (Poly1𝑅)))
42 eqid 2735 . . . . . . . 8 (0g‘(∅ Mat (Poly1𝑅))) = (0g‘(∅ Mat (Poly1𝑅)))
4341, 42, 13grpsubid 19055 . . . . . . 7 (((∅ Mat (Poly1𝑅)) ∈ Grp ∧ ∅ ∈ (Base‘(∅ Mat (Poly1𝑅)))) → (∅(-g‘(∅ Mat (Poly1𝑅)))∅) = (0g‘(∅ Mat (Poly1𝑅))))
4437, 40, 43syl2anc 584 . . . . . 6 (𝑅 ∈ Ring → (∅(-g‘(∅ Mat (Poly1𝑅)))∅) = (0g‘(∅ Mat (Poly1𝑅))))
4533, 44eqtrd 2775 . . . . 5 (𝑅 ∈ Ring → (((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅)) = (0g‘(∅ Mat (Poly1𝑅))))
4645fveq2d 6911 . . . 4 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))))
4711mat0dim0 22489 . . . . . . 7 ((Poly1𝑅) ∈ Ring → (0g‘(∅ Mat (Poly1𝑅))) = ∅)
4820, 47syl 17 . . . . . 6 (𝑅 ∈ Ring → (0g‘(∅ Mat (Poly1𝑅))) = ∅)
4948fveq2d 6911 . . . . 5 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘∅))
50 fvex 6920 . . . . . 6 (1r‘(Poly1𝑅)) ∈ V
513, 50fvsn 7201 . . . . 5 ({⟨∅, (1r‘(Poly1𝑅))⟩}‘∅) = (1r‘(Poly1𝑅))
5249, 51eqtrdi 2791 . . . 4 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))) = (1r‘(Poly1𝑅)))
5346, 52eqtrd 2775 . . 3 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = (1r‘(Poly1𝑅)))
5423, 53eqtrd 2775 . 2 (𝑅 ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = (1r‘(Poly1𝑅)))
5519, 54eqtrd 2775 1 (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  c0 4339  {csn 4631  cop 4637  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245   ·𝑠 cvsca 17302  0gc0g 17486  Grpcgrp 18964  -gcsg 18966  1rcur 20199  Ringcrg 20251  var1cv1 22193  Poly1cpl1 22194   Mat cmat 22427   maDet cmdat 22606   matToPolyMat cmat2pmat 22726   CharPlyMat cchpmat 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-splice 14785  df-reverse 14794  df-s2 14884  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-efmnd 18895  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-gim 19290  df-cntz 19348  df-oppg 19377  df-symg 19402  df-pmtr 19475  df-psgn 19524  df-evpm 19525  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-dsmm 21770  df-frlm 21785  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-mamu 22411  df-mat 22428  df-mdet 22607  df-mat2pmat 22729  df-chpmat 22849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator