MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmat0d Structured version   Visualization version   GIF version

Theorem chpmat0d 21439
Description: The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019.)
Hypothesis
Ref Expression
chpmat0.c 𝐶 = (∅ CharPlyMat 𝑅)
Assertion
Ref Expression
chpmat0d (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1𝑅)))

Proof of Theorem chpmat0d
StepHypRef Expression
1 0fin 8730 . . 3 ∅ ∈ Fin
2 id 22 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
3 0ex 5175 . . . . 5 ∅ ∈ V
43snid 4561 . . . 4 ∅ ∈ {∅}
5 mat0dimbas0 21071 . . . 4 (𝑅 ∈ Ring → (Base‘(∅ Mat 𝑅)) = {∅})
64, 5eleqtrrid 2897 . . 3 (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat 𝑅)))
7 chpmat0.c . . . 4 𝐶 = (∅ CharPlyMat 𝑅)
8 eqid 2798 . . . 4 (∅ Mat 𝑅) = (∅ Mat 𝑅)
9 eqid 2798 . . . 4 (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅))
10 eqid 2798 . . . 4 (Poly1𝑅) = (Poly1𝑅)
11 eqid 2798 . . . 4 (∅ Mat (Poly1𝑅)) = (∅ Mat (Poly1𝑅))
12 eqid 2798 . . . 4 (∅ maDet (Poly1𝑅)) = (∅ maDet (Poly1𝑅))
13 eqid 2798 . . . 4 (-g‘(∅ Mat (Poly1𝑅))) = (-g‘(∅ Mat (Poly1𝑅)))
14 eqid 2798 . . . 4 (var1𝑅) = (var1𝑅)
15 eqid 2798 . . . 4 ( ·𝑠 ‘(∅ Mat (Poly1𝑅))) = ( ·𝑠 ‘(∅ Mat (Poly1𝑅)))
16 eqid 2798 . . . 4 (∅ matToPolyMat 𝑅) = (∅ matToPolyMat 𝑅)
17 eqid 2798 . . . 4 (1r‘(∅ Mat (Poly1𝑅))) = (1r‘(∅ Mat (Poly1𝑅)))
187, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17chpmatval 21436 . . 3 ((∅ ∈ Fin ∧ 𝑅 ∈ Ring ∧ ∅ ∈ (Base‘(∅ Mat 𝑅))) → (𝐶‘∅) = ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
191, 2, 6, 18mp3an2i 1463 . 2 (𝑅 ∈ Ring → (𝐶‘∅) = ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2010ply1ring 20877 . . . 4 (𝑅 ∈ Ring → (Poly1𝑅) ∈ Ring)
21 mdet0pr 21197 . . . . 5 ((Poly1𝑅) ∈ Ring → (∅ maDet (Poly1𝑅)) = {⟨∅, (1r‘(Poly1𝑅))⟩})
2221fveq1d 6647 . . . 4 ((Poly1𝑅) ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2320, 22syl 17 . . 3 (𝑅 ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))))
2411mat0dimid 21073 . . . . . . . . . 10 ((Poly1𝑅) ∈ Ring → (1r‘(∅ Mat (Poly1𝑅))) = ∅)
2520, 24syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (1r‘(∅ Mat (Poly1𝑅))) = ∅)
2625oveq2d 7151 . . . . . . . 8 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅)))) = ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅))
27 eqid 2798 . . . . . . . . . 10 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
2814, 10, 27vr1cl 20846 . . . . . . . . 9 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘(Poly1𝑅)))
2911mat0dimscm 21074 . . . . . . . . 9 (((Poly1𝑅) ∈ Ring ∧ (var1𝑅) ∈ (Base‘(Poly1𝑅))) → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅) = ∅)
3020, 28, 29syl2anc 587 . . . . . . . 8 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))∅) = ∅)
3126, 30eqtrd 2833 . . . . . . 7 (𝑅 ∈ Ring → ((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅)))) = ∅)
32 d0mat2pmat 21343 . . . . . . 7 (𝑅 ∈ Ring → ((∅ matToPolyMat 𝑅)‘∅) = ∅)
3331, 32oveq12d 7153 . . . . . 6 (𝑅 ∈ Ring → (((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅)) = (∅(-g‘(∅ Mat (Poly1𝑅)))∅))
3411matring 21048 . . . . . . . . 9 ((∅ ∈ Fin ∧ (Poly1𝑅) ∈ Ring) → (∅ Mat (Poly1𝑅)) ∈ Ring)
351, 20, 34sylancr 590 . . . . . . . 8 (𝑅 ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Ring)
36 ringgrp 19295 . . . . . . . 8 ((∅ Mat (Poly1𝑅)) ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Grp)
3735, 36syl 17 . . . . . . 7 (𝑅 ∈ Ring → (∅ Mat (Poly1𝑅)) ∈ Grp)
38 mat0dimbas0 21071 . . . . . . . . 9 ((Poly1𝑅) ∈ Ring → (Base‘(∅ Mat (Poly1𝑅))) = {∅})
3920, 38syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘(∅ Mat (Poly1𝑅))) = {∅})
404, 39eleqtrrid 2897 . . . . . . 7 (𝑅 ∈ Ring → ∅ ∈ (Base‘(∅ Mat (Poly1𝑅))))
41 eqid 2798 . . . . . . . 8 (Base‘(∅ Mat (Poly1𝑅))) = (Base‘(∅ Mat (Poly1𝑅)))
42 eqid 2798 . . . . . . . 8 (0g‘(∅ Mat (Poly1𝑅))) = (0g‘(∅ Mat (Poly1𝑅)))
4341, 42, 13grpsubid 18175 . . . . . . 7 (((∅ Mat (Poly1𝑅)) ∈ Grp ∧ ∅ ∈ (Base‘(∅ Mat (Poly1𝑅)))) → (∅(-g‘(∅ Mat (Poly1𝑅)))∅) = (0g‘(∅ Mat (Poly1𝑅))))
4437, 40, 43syl2anc 587 . . . . . 6 (𝑅 ∈ Ring → (∅(-g‘(∅ Mat (Poly1𝑅)))∅) = (0g‘(∅ Mat (Poly1𝑅))))
4533, 44eqtrd 2833 . . . . 5 (𝑅 ∈ Ring → (((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅)) = (0g‘(∅ Mat (Poly1𝑅))))
4645fveq2d 6649 . . . 4 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))))
4711mat0dim0 21072 . . . . . . 7 ((Poly1𝑅) ∈ Ring → (0g‘(∅ Mat (Poly1𝑅))) = ∅)
4820, 47syl 17 . . . . . 6 (𝑅 ∈ Ring → (0g‘(∅ Mat (Poly1𝑅))) = ∅)
4948fveq2d 6649 . . . . 5 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))) = ({⟨∅, (1r‘(Poly1𝑅))⟩}‘∅))
50 fvex 6658 . . . . . 6 (1r‘(Poly1𝑅)) ∈ V
513, 50fvsn 6920 . . . . 5 ({⟨∅, (1r‘(Poly1𝑅))⟩}‘∅) = (1r‘(Poly1𝑅))
5249, 51eqtrdi 2849 . . . 4 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(0g‘(∅ Mat (Poly1𝑅)))) = (1r‘(Poly1𝑅)))
5346, 52eqtrd 2833 . . 3 (𝑅 ∈ Ring → ({⟨∅, (1r‘(Poly1𝑅))⟩}‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = (1r‘(Poly1𝑅)))
5423, 53eqtrd 2833 . 2 (𝑅 ∈ Ring → ((∅ maDet (Poly1𝑅))‘(((var1𝑅)( ·𝑠 ‘(∅ Mat (Poly1𝑅)))(1r‘(∅ Mat (Poly1𝑅))))(-g‘(∅ Mat (Poly1𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = (1r‘(Poly1𝑅)))
5519, 54eqtrd 2833 1 (𝑅 ∈ Ring → (𝐶‘∅) = (1r‘(Poly1𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  c0 4243  {csn 4525  cop 4531  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  1rcur 19244  Ringcrg 19290  var1cv1 20805  Poly1cpl1 20806   Mat cmat 21012   maDet cmdat 21189   matToPolyMat cmat2pmat 21309   CharPlyMat cchpmat 21431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-symg 18488  df-pmtr 18562  df-psgn 18611  df-evpm 18612  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-dsmm 20421  df-frlm 20436  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-mamu 20991  df-mat 21013  df-mdet 21190  df-mat2pmat 21312  df-chpmat 21432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator