![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0 | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.) |
Ref | Expression |
---|---|
fz0 | ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3043 | . . 3 ⊢ (𝑀 ∉ ℤ ↔ ¬ 𝑀 ∈ ℤ) | |
2 | df-nel 3043 | . . 3 ⊢ (𝑁 ∉ ℤ ↔ ¬ 𝑁 ∈ ℤ) | |
3 | 1, 2 | orbi12i 913 | . 2 ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ)) |
4 | ianor 980 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ)) | |
5 | fzf 13515 | . . . . 5 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
6 | 5 | fdmi 6729 | . . . 4 ⊢ dom ... = (ℤ × ℤ) |
7 | 6 | ndmov 7600 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅) |
8 | 4, 7 | sylbir 234 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅) |
9 | 3, 8 | sylbi 216 | 1 ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∉ wnel 3042 ∅c0 4319 𝒫 cpw 4599 × cxp 5671 (class class class)co 7415 ℤcz 12583 ...cfz 13511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7988 df-2nd 7989 df-neg 11472 df-z 12584 df-fz 13512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |