MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0 Structured version   Visualization version   GIF version

Theorem fz0 12912
Description: A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.)
Assertion
Ref Expression
fz0 ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅)

Proof of Theorem fz0
StepHypRef Expression
1 df-nel 3124 . . 3 (𝑀 ∉ ℤ ↔ ¬ 𝑀 ∈ ℤ)
2 df-nel 3124 . . 3 (𝑁 ∉ ℤ ↔ ¬ 𝑁 ∈ ℤ)
31, 2orbi12i 911 . 2 ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ))
4 ianor 978 . . 3 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ))
5 fzf 12886 . . . . 5 ...:(ℤ × ℤ)⟶𝒫 ℤ
65fdmi 6510 . . . 4 dom ... = (ℤ × ℤ)
76ndmov 7318 . . 3 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅)
84, 7sylbir 237 . 2 ((¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅)
93, 8sylbi 219 1 ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wnel 3123  c0 4279  𝒫 cpw 4525   × cxp 5539  (class class class)co 7142  cz 11968  ...cfz 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-fv 6349  df-ov 7145  df-oprab 7146  df-mpo 7147  df-1st 7675  df-2nd 7676  df-neg 10859  df-z 11969  df-fz 12883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator