| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0 | Structured version Visualization version GIF version | ||
| Description: A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| fz0 | ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3030 | . . 3 ⊢ (𝑀 ∉ ℤ ↔ ¬ 𝑀 ∈ ℤ) | |
| 2 | df-nel 3030 | . . 3 ⊢ (𝑁 ∉ ℤ ↔ ¬ 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | orbi12i 914 | . 2 ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ)) |
| 4 | ianor 983 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ)) | |
| 5 | fzf 13433 | . . . . 5 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 6 | 5 | fdmi 6667 | . . . 4 ⊢ dom ... = (ℤ × ℤ) |
| 7 | 6 | ndmov 7537 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅) |
| 8 | 4, 7 | sylbir 235 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅) |
| 9 | 3, 8 | sylbi 217 | 1 ⊢ ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∅c0 4286 𝒫 cpw 4553 × cxp 5621 (class class class)co 7353 ℤcz 12490 ...cfz 13429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-neg 11369 df-z 12491 df-fz 13430 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |