![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0 | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.) |
Ref | Expression |
---|---|
fz0 | β’ ((π β β€ β¨ π β β€) β (π...π) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3045 | . . 3 β’ (π β β€ β Β¬ π β β€) | |
2 | df-nel 3045 | . . 3 β’ (π β β€ β Β¬ π β β€) | |
3 | 1, 2 | orbi12i 911 | . 2 β’ ((π β β€ β¨ π β β€) β (Β¬ π β β€ β¨ Β¬ π β β€)) |
4 | ianor 978 | . . 3 β’ (Β¬ (π β β€ β§ π β β€) β (Β¬ π β β€ β¨ Β¬ π β β€)) | |
5 | fzf 13494 | . . . . 5 β’ ...:(β€ Γ β€)βΆπ« β€ | |
6 | 5 | fdmi 6730 | . . . 4 β’ dom ... = (β€ Γ β€) |
7 | 6 | ndmov 7595 | . . 3 β’ (Β¬ (π β β€ β§ π β β€) β (π...π) = β ) |
8 | 4, 7 | sylbir 234 | . 2 β’ ((Β¬ π β β€ β¨ Β¬ π β β€) β (π...π) = β ) |
9 | 3, 8 | sylbi 216 | 1 β’ ((π β β€ β¨ π β β€) β (π...π) = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β¨ wo 843 = wceq 1539 β wcel 2104 β wnel 3044 β c0 4323 π« cpw 4603 Γ cxp 5675 (class class class)co 7413 β€cz 12564 ...cfz 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-neg 11453 df-z 12565 df-fz 13491 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |