MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn0 Structured version   Visualization version   GIF version

Theorem fzn0 12960
Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzn0 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))

Proof of Theorem fzn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4244 . . 3 ((𝑀...𝑁) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑀...𝑁))
2 elfzuz2 12951 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
32exlimiv 1932 . . 3 (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 220 . 2 ((𝑀...𝑁) ≠ ∅ → 𝑁 ∈ (ℤ𝑀))
5 eluzfz1 12953 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
65ne0d 4235 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≠ ∅)
74, 6impbii 212 1 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wex 1782  wcel 2112  wne 2952  c0 4226  cfv 6333  (class class class)co 7148  cuz 12272  ...cfz 12929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-pre-lttri 10639  ax-pre-lttrn 10640
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7691  df-2nd 7692  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-neg 10901  df-z 12011  df-uz 12273  df-fz 12930
This theorem is referenced by:  fzn  12962  fzfi  13379  fseqsupcl  13384  ffz0iswrd  13930  fsumrev2  15175  gsumval3  19085  pmatcollpw3fi  21475  iscmet3  23983  dchrisum0flblem1  26181  pntrsumbnd2  26240  wlkn0  27499  fzdifsuc2  42300  stoweidlem26  43024
  Copyright terms: Public domain W3C validator