MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn0 Structured version   Visualization version   GIF version

Theorem fzn0 13445
Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzn0 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))

Proof of Theorem fzn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4302 . . 3 ((𝑀...𝑁) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑀...𝑁))
2 elfzuz2 13436 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
32exlimiv 1931 . . 3 (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 217 . 2 ((𝑀...𝑁) ≠ ∅ → 𝑁 ∈ (ℤ𝑀))
5 eluzfz1 13438 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
65ne0d 4291 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≠ ∅)
74, 6impbii 209 1 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780  wcel 2113  wne 2929  c0 4282  cfv 6489  (class class class)co 7355  cuz 12742  ...cfz 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-pre-lttri 11091  ax-pre-lttrn 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-neg 11358  df-z 12480  df-uz 12743  df-fz 13415
This theorem is referenced by:  fzn  13447  fzfi  13886  fseqsupcl  13891  ffz0iswrd  14455  fsumrev2  15696  gsumval3  19827  pmatcollpw3fi  22720  iscmet3  25240  dchrisum0flblem1  27466  pntrsumbnd2  27525  wlkn0  29620  gsumwrd2dccat  33088  aks6d1c2lem4  42293  aks6d1c2  42296  aks6d1c6lem3  42338  fzdifsuc2  45474  stoweidlem26  46186
  Copyright terms: Public domain W3C validator