Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzn0 | Structured version Visualization version GIF version |
Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fzn0 | ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4244 | . . 3 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑀...𝑁)) | |
2 | elfzuz2 12951 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | 2 | exlimiv 1932 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | 1, 3 | sylbi 220 | . 2 ⊢ ((𝑀...𝑁) ≠ ∅ → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzfz1 12953 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
6 | 5 | ne0d 4235 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≠ ∅) |
7 | 4, 6 | impbii 212 | 1 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∃wex 1782 ∈ wcel 2112 ≠ wne 2952 ∅c0 4226 ‘cfv 6333 (class class class)co 7148 ℤ≥cuz 12272 ...cfz 12929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-pre-lttri 10639 ax-pre-lttrn 10640 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7151 df-oprab 7152 df-mpo 7153 df-1st 7691 df-2nd 7692 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-neg 10901 df-z 12011 df-uz 12273 df-fz 12930 |
This theorem is referenced by: fzn 12962 fzfi 13379 fseqsupcl 13384 ffz0iswrd 13930 fsumrev2 15175 gsumval3 19085 pmatcollpw3fi 21475 iscmet3 23983 dchrisum0flblem1 26181 pntrsumbnd2 26240 wlkn0 27499 fzdifsuc2 42300 stoweidlem26 43024 |
Copyright terms: Public domain | W3C validator |