| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzn0 | Structured version Visualization version GIF version | ||
| Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzn0 | ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4333 | . . 3 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑀...𝑁)) | |
| 2 | elfzuz2 13551 | . . . 4 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 3 | 2 | exlimiv 1929 | . . 3 ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ ((𝑀...𝑁) ≠ ∅ → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | eluzfz1 13553 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
| 6 | 5 | ne0d 4322 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≠ ∅) |
| 7 | 4, 6 | impbii 209 | 1 ⊢ ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 ‘cfv 6541 (class class class)co 7413 ℤ≥cuz 12860 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-neg 11477 df-z 12597 df-uz 12861 df-fz 13530 |
| This theorem is referenced by: fzn 13562 fzfi 13995 fseqsupcl 14000 ffz0iswrd 14562 fsumrev2 15801 gsumval3 19894 pmatcollpw3fi 22740 iscmet3 25264 dchrisum0flblem1 27489 pntrsumbnd2 27548 wlkn0 29568 gsumwrd2dccat 33014 aks6d1c2lem4 42103 aks6d1c2 42106 aks6d1c6lem3 42148 fzdifsuc2 45294 stoweidlem26 46013 |
| Copyright terms: Public domain | W3C validator |