MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn0 Structured version   Visualization version   GIF version

Theorem fzn0 12924
Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzn0 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))

Proof of Theorem fzn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4313 . . 3 ((𝑀...𝑁) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑀...𝑁))
2 elfzuz2 12915 . . . 4 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
32exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 219 . 2 ((𝑀...𝑁) ≠ ∅ → 𝑁 ∈ (ℤ𝑀))
5 eluzfz1 12917 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
65ne0d 4304 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≠ ∅)
74, 6impbii 211 1 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wex 1779  wcel 2113  wne 3019  c0 4294  cfv 6358  (class class class)co 7159  cuz 12246  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-neg 10876  df-z 11985  df-uz 12247  df-fz 12896
This theorem is referenced by:  fzn  12926  fzfi  13343  fseqsupcl  13348  ffz0iswrd  13894  fsumrev2  15140  gsumval3  19030  pmatcollpw3fi  21396  iscmet3  23899  dchrisum0flblem1  26087  pntrsumbnd2  26146  wlkn0  27405  fzdifsuc2  41583  stoweidlem26  42318
  Copyright terms: Public domain W3C validator