MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn Structured version   Visualization version   GIF version

Theorem fzn 13443
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
Assertion
Ref Expression
fzn ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))

Proof of Theorem fzn
StepHypRef Expression
1 fzn0 13441 . . . 4 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
2 eluz 12749 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
31, 2bitrid 283 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀...𝑁) ≠ ∅ ↔ 𝑀𝑁))
4 zre 12475 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 12475 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 lenlt 11194 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
74, 5, 6syl2an 596 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
83, 7bitr2d 280 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 < 𝑀 ↔ (𝑀...𝑁) ≠ ∅))
98necon4bbid 2966 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008   < clt 11149  cle 11150  cz 12471  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  fz1n  13445  fz10  13448  fzsuc2  13485  fzm1  13510  fzon  13583  hashfzp1  14338  isumsplit  15747  arisum2  15768  risefall0lem  15933  prmreclem4  16831  prmreclem5  16832  ppi1  27072  cht1  27073  ppiublem2  27112  lgsdir2lem3  27236  wlkv0  29595  chtvalz  34603  fz0n  35714  poimirlem10  37620  poimirlem23  37633  poimirlem28  37638  fdc  37735  mettrifi  37747  sticksstones11  42139  fzisoeu  45292  fzdifsuc2  45302
  Copyright terms: Public domain W3C validator