MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumle Structured version   Visualization version   GIF version

Theorem dvfsumle 24301
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumle.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvfsumle.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumle.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumle.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumle.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
dvfsumle.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
Assertion
Ref Expression
dvfsumle (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem dvfsumle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13192 . . . 4 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . 3 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumle.x . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
4 dvfsumle.m . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12098 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12103 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
9 fzval2 12745 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4125 . . . . . . . . 9 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11syl6eqss 3942 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3889 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumle.a . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
15 cncff 23184 . . . . . . . . . 10 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
17 eqid 2795 . . . . . . . . . 10 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 6737 . . . . . . . . 9 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1916, 18sylibr 235 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
20 nfcsb1v 3833 . . . . . . . . . 10 𝑥𝑦 / 𝑥𝐴
2120nfel1 2963 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐴 ∈ ℝ
22 csbeq1a 3824 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2867 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝑦 / 𝑥𝐴 ∈ ℝ))
2421, 23rspc 3553 . . . . . . . 8 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑦 / 𝑥𝐴 ∈ ℝ))
2519, 24mpan9 507 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2613, 25syldan 591 . . . . . 6 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2726ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ)
28 fzofzp1 12984 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3814 . . . . . . 7 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2867 . . . . . 6 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℝ))
3130rspccva 3558 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
3227, 28, 31syl2an 595 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
33 elfzofz 12903 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3814 . . . . . . 7 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2867 . . . . . 6 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑘 / 𝑥𝐴 ∈ ℝ))
3635rspccva 3558 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3727, 33, 36syl2an 595 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3832, 37resubcld 10916 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℝ)
39 elfzoelz 12888 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
4039adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
4140zred 11936 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
4241recnd 10515 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
43 ax-1cn 10441 . . . . . . 7 1 ∈ ℂ
44 pncan2 10740 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 𝑘) = 1)
4542, 43, 44sylancl 586 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
4645oveq2d 7032 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
473recnd 10515 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
48 peano2re 10660 . . . . . . . 8 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4941, 48syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
5049recnd 10515 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
5147, 50, 42subdid 10944 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
5247mulid1d 10504 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
5346, 51, 523eqtr3d 2839 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
54 eqid 2795 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5554mulcn 23158 . . . . . 6 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
566zred 11936 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
5756adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
588zred 11936 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
5958adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
60 elfzole1 12896 . . . . . . . . . . 11 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
6160adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
6228adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
63 elfzle2 12761 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
6462, 63syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
65 iccss 12654 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
6657, 59, 61, 64, 65syl22anc 835 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
67 iccssre 12668 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
6856, 58, 67syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
6968adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
7066, 69sstrd 3899 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
71 ax-resscn 10440 . . . . . . . 8 ℝ ⊆ ℂ
7270, 71syl6ss 3901 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℂ)
7371a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
74 cncfmptc 23202 . . . . . . 7 ((𝑋 ∈ ℝ ∧ (𝑘[,](𝑘 + 1)) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
753, 72, 73, 74syl3anc 1364 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
76 cncfmptid 23203 . . . . . . 7 (((𝑘[,](𝑘 + 1)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
7770, 71, 76sylancl 586 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
78 remulcl 10468 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) ∈ ℝ)
7954, 55, 75, 77, 71, 78cncfmpt2ss 23206 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
80 reelprrecn 10475 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8180a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
8257rexrd 10537 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
83 iooss1 12623 . . . . . . . . . . 11 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
8482, 61, 83syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
8559rexrd 10537 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
86 iooss2 12624 . . . . . . . . . . 11 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
8785, 64, 86syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
8884, 87sstrd 3899 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
89 ioossicc 12672 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
9069, 71syl6ss 3901 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
9189, 90syl5ss 3900 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
9288, 91sstrd 3899 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℂ)
9392sselda 3889 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑦 ∈ ℂ)
94 1cnd 10482 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 1 ∈ ℂ)
9573sselda 3889 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
96 1cnd 10482 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
9781dvmptid 24237 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
98 ioossre 12648 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ⊆ ℝ
9998a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℝ)
10054tgioo2 23094 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
101 iooretop 23057 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
102101a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
10381, 95, 96, 97, 99, 100, 54, 102dvmptres 24243 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 1))
10481, 93, 94, 103, 47dvmptcmul 24244 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)))
10552mpteq2dv 5056 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
106104, 105eqtrd 2831 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
107 nfcv 2949 . . . . . . 7 𝑦𝐴
108107, 20, 22cbvmpt 5060 . . . . . 6 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)
10966resmptd 5789 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴))
11014adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
111 rescncf 23188 . . . . . . . 8 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)))
11266, 110, 111sylc 65 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
113109, 112eqeltrrd 2884 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
114108, 113syl5eqelr 2888 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
11516adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
116115, 18sylibr 235 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
11789sseli 3885 . . . . . . . 8 (𝑦 ∈ (𝑀(,)𝑁) → 𝑦 ∈ (𝑀[,]𝑁))
11824impcom 408 . . . . . . . 8 ((∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ∧ 𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
119116, 117, 118syl2an 595 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
120119recnd 10515 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
12189sseli 3885 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
12216fvmptelrn 6740 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
123122adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
124121, 123sylan2 592 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
125124fmpttd 6742 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
126 ioossre 12648 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ ℝ
127 dvfre 24231 . . . . . . . . . 10 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
128125, 126, 127sylancl 586 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
129 dvfsumle.b . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
130129adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
131130dmeqd 5660 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
132 dvfsumle.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
133132adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
134133ralrimiva 3149 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉)
135 dmmptg 5971 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
136134, 135syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
137131, 136eqtrd 2831 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
138130, 137feq12d 6370 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
139128, 138mpbid 233 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
140 eqid 2795 . . . . . . . . 9 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)
141140fmpt 6737 . . . . . . . 8 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
142139, 141sylibr 235 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ)
143 nfcsb1v 3833 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐵
144143nfel1 2963 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵 ∈ ℝ
145 csbeq1a 3824 . . . . . . . . 9 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
146145eleq1d 2867 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵 ∈ ℝ ↔ 𝑦 / 𝑥𝐵 ∈ ℝ))
147144, 146rspc 3553 . . . . . . 7 (𝑦 ∈ (𝑀(,)𝑁) → (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ → 𝑦 / 𝑥𝐵 ∈ ℝ))
148142, 147mpan9 507 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐵 ∈ ℝ)
149107, 20, 22cbvmpt 5060 . . . . . . . 8 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)
150149oveq2i 7027 . . . . . . 7 (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴))
151 nfcv 2949 . . . . . . . 8 𝑦𝐵
152151, 143, 145cbvmpt 5060 . . . . . . 7 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵)
153130, 150, 1523eqtr3g 2854 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵))
15481, 120, 148, 153, 88, 100, 54, 102dvmptres 24243 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐵))
155 dvfsumle.l . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
156155anassrs 468 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝐵)
157156ralrimiva 3149 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵)
158 nfcv 2949 . . . . . . . 8 𝑥𝑋
159 nfcv 2949 . . . . . . . 8 𝑥
160158, 159, 143nfbr 5009 . . . . . . 7 𝑥 𝑋𝑦 / 𝑥𝐵
161145breq2d 4974 . . . . . . 7 (𝑥 = 𝑦 → (𝑋𝐵𝑋𝑦 / 𝑥𝐵))
162160, 161rspc 3553 . . . . . 6 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵𝑋𝑦 / 𝑥𝐵))
163157, 162mpan9 507 . . . . 5 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝑦 / 𝑥𝐵)
16441rexrd 10537 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
16549rexrd 10537 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
16641lep1d 11419 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
167 lbicc2 12702 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
168164, 165, 166, 167syl3anc 1364 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
169 ubicc2 12703 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
170164, 165, 166, 169syl3anc 1364 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
171 oveq2 7024 . . . . 5 (𝑦 = 𝑘 → (𝑋 · 𝑦) = (𝑋 · 𝑘))
172 oveq2 7024 . . . . 5 (𝑦 = (𝑘 + 1) → (𝑋 · 𝑦) = (𝑋 · (𝑘 + 1)))
17341, 49, 79, 106, 114, 154, 163, 168, 170, 166, 171, 34, 172, 29dvle 24287 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
17453, 173eqbrtrrd 4986 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
1752, 3, 38, 174fsumle 14987 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
176 vex 3440 . . . . 5 𝑦 ∈ V
177176a1i 11 . . . 4 (𝑦 = 𝑀𝑦 ∈ V)
178 eqeq2 2806 . . . . . 6 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
179178biimpa 477 . . . . 5 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
180 dvfsumle.c . . . . 5 (𝑥 = 𝑀𝐴 = 𝐶)
181179, 180syl 17 . . . 4 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
182177, 181csbied 3844 . . 3 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
183176a1i 11 . . . 4 (𝑦 = 𝑁𝑦 ∈ V)
184 eqeq2 2806 . . . . . 6 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
185184biimpa 477 . . . . 5 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
186 dvfsumle.d . . . . 5 (𝑥 = 𝑁𝐴 = 𝐷)
187185, 186syl 17 . . . 4 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
188183, 187csbied 3844 . . 3 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
18926recnd 10515 . . 3 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
19034, 29, 182, 188, 4, 189telfsumo2 14991 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
191175, 190breqtrd 4988 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  csb 3811  cin 3858  wss 3859  {cpr 4474   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444  cres 5445  wf 6221  cfv 6225  (class class class)co 7016  Fincfn 8357  cc 10381  cr 10382  1c1 10384   + caddc 10386   · cmul 10388  *cxr 10520  cle 10522  cmin 10717  cz 11829  cuz 12093  (,)cioo 12588  [,]cicc 12591  ...cfz 12742  ..^cfzo 12883  Σcsu 14876  TopOpenctopn 16524  topGenctg 16540  fldccnfld 20227  cnccncf 23167   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by:  dvfsumge  24302
  Copyright terms: Public domain W3C validator