Step | Hyp | Ref
| Expression |
1 | | fzofi 13694 |
. . . 4
⊢ (𝑀..^𝑁) ∈ Fin |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
3 | | dvfsumle.x |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ) |
4 | | dvfsumle.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | | eluzel2 12587 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | eluzelz 12592 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
8 | 4, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
9 | | fzval2 13242 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
10 | 6, 8, 9 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
11 | | inss1 4162 |
. . . . . . . . 9
⊢ ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁) |
12 | 10, 11 | eqsstrdi 3975 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁)) |
13 | 12 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁)) |
14 | | dvfsumle.a |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
15 | | cncff 24056 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
17 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) |
18 | 17 | fmpt 6984 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
19 | 16, 18 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ) |
20 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 |
21 | 20 | nfel1 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ |
22 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) |
23 | 22 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ)) |
24 | 21, 23 | rspc 3549 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ)) |
25 | 19, 24 | mpan9 507 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀[,]𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
26 | 13, 25 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀...𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
27 | 26 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
28 | | fzofzp1 13484 |
. . . . 5
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
29 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑦 = (𝑘 + 1) → ⦋𝑦 / 𝑥⦌𝐴 = ⦋(𝑘 + 1) / 𝑥⦌𝐴) |
30 | 29 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = (𝑘 + 1) → (⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ↔ ⦋(𝑘 + 1) / 𝑥⦌𝐴 ∈ ℝ)) |
31 | 30 | rspccva 3560 |
. . . . 5
⊢
((∀𝑦 ∈
(𝑀...𝑁)⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → ⦋(𝑘 + 1) / 𝑥⦌𝐴 ∈ ℝ) |
32 | 27, 28, 31 | syl2an 596 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ⦋(𝑘 + 1) / 𝑥⦌𝐴 ∈ ℝ) |
33 | | elfzofz 13403 |
. . . . 5
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁)) |
34 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑦 = 𝑘 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑘 / 𝑥⦌𝐴) |
35 | 34 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = 𝑘 → (⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ↔ ⦋𝑘 / 𝑥⦌𝐴 ∈ ℝ)) |
36 | 35 | rspccva 3560 |
. . . . 5
⊢
((∀𝑦 ∈
(𝑀...𝑁)⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ∧ 𝑘 ∈ (𝑀...𝑁)) → ⦋𝑘 / 𝑥⦌𝐴 ∈ ℝ) |
37 | 27, 33, 36 | syl2an 596 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ⦋𝑘 / 𝑥⦌𝐴 ∈ ℝ) |
38 | 32, 37 | resubcld 11403 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴) ∈ ℝ) |
39 | | elfzoelz 13387 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ) |
40 | 39 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ) |
41 | 40 | zred 12426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ) |
42 | 41 | recnd 11003 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ) |
43 | | ax-1cn 10929 |
. . . . . . 7
⊢ 1 ∈
ℂ |
44 | | pncan2 11228 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 𝑘) =
1) |
45 | 42, 43, 44 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1) |
46 | 45 | oveq2d 7291 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1)) |
47 | 3 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ) |
48 | | peano2re 11148 |
. . . . . . . 8
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
49 | 41, 48 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ) |
50 | 49 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ) |
51 | 47, 50, 42 | subdid 11431 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘))) |
52 | 47 | mulid1d 10992 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋) |
53 | 46, 51, 52 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋) |
54 | | eqid 2738 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
55 | 54 | mulcn 24030 |
. . . . . 6
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
56 | 6 | zred 12426 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
57 | 56 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ) |
58 | 8 | zred 12426 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
59 | 58 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ) |
60 | | elfzole1 13395 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝑘) |
61 | 60 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ≤ 𝑘) |
62 | 28 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
63 | | elfzle2 13260 |
. . . . . . . . . . 11
⊢ ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁) |
64 | 62, 63 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁) |
65 | | iccss 13147 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀 ≤ 𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁)) |
66 | 57, 59, 61, 64, 65 | syl22anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁)) |
67 | | iccssre 13161 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ) |
68 | 56, 58, 67 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ ℝ) |
69 | 68 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ) |
70 | 66, 69 | sstrd 3931 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ) |
71 | | ax-resscn 10928 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
72 | 70, 71 | sstrdi 3933 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℂ) |
73 | 71 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆
ℂ) |
74 | | cncfmptc 24075 |
. . . . . . 7
⊢ ((𝑋 ∈ ℝ ∧ (𝑘[,](𝑘 + 1)) ⊆ ℂ ∧ ℝ ⊆
ℂ) → (𝑦 ∈
(𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
75 | 3, 72, 73, 74 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
76 | | cncfmptid 24076 |
. . . . . . 7
⊢ (((𝑘[,](𝑘 + 1)) ⊆ ℝ ∧ ℝ ⊆
ℂ) → (𝑦 ∈
(𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
77 | 70, 71, 76 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
78 | | remulcl 10956 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) ∈ ℝ) |
79 | 54, 55, 75, 77, 71, 78 | cncfmpt2ss 24079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
80 | | reelprrecn 10963 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
81 | 80 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ,
ℂ}) |
82 | 57 | rexrd 11025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈
ℝ*) |
83 | | iooss1 13114 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ*
∧ 𝑀 ≤ 𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1))) |
84 | 82, 61, 83 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1))) |
85 | 59 | rexrd 11025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈
ℝ*) |
86 | | iooss2 13115 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℝ*
∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
87 | 85, 64, 86 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
88 | 84, 87 | sstrd 3931 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
89 | | ioossicc 13165 |
. . . . . . . . . 10
⊢ (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) |
90 | 69, 71 | sstrdi 3933 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ) |
91 | 89, 90 | sstrid 3932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ) |
92 | 88, 91 | sstrd 3931 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℂ) |
93 | 92 | sselda 3921 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑦 ∈ ℂ) |
94 | | 1cnd 10970 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 1 ∈
ℂ) |
95 | 73 | sselda 3921 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
96 | | 1cnd 10970 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 1 ∈
ℂ) |
97 | 81 | dvmptid 25121 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1)) |
98 | | ioossre 13140 |
. . . . . . . . 9
⊢ (𝑘(,)(𝑘 + 1)) ⊆ ℝ |
99 | 98 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℝ) |
100 | 54 | tgioo2 23966 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
101 | | iooretop 23929 |
. . . . . . . . 9
⊢ (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran
(,)) |
102 | 101 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran
(,))) |
103 | 81, 95, 96, 97, 99, 100, 54, 102 | dvmptres 25127 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 1)) |
104 | 81, 93, 94, 103, 47 | dvmptcmul 25128 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1))) |
105 | 52 | mpteq2dv 5176 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋)) |
106 | 104, 105 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋)) |
107 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑦𝐴 |
108 | 107, 20, 22 | cbvmpt 5185 |
. . . . . 6
⊢ (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐴) |
109 | 66 | resmptd 5948 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴)) |
110 | 14 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
111 | | rescncf 24060 |
. . . . . . . 8
⊢ ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))) |
112 | 66, 110, 111 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
113 | 109, 112 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
114 | 108, 113 | eqeltrrid 2844 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
115 | 16 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
116 | 115, 18 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ) |
117 | 89 | sseli 3917 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑀(,)𝑁) → 𝑦 ∈ (𝑀[,]𝑁)) |
118 | 24 | impcom 408 |
. . . . . . . 8
⊢
((∀𝑥 ∈
(𝑀[,]𝑁)𝐴 ∈ ℝ ∧ 𝑦 ∈ (𝑀[,]𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
119 | 116, 117,
118 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
120 | 119 | recnd 11003 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ) |
121 | 89 | sseli 3917 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁)) |
122 | 16 | fvmptelrn 6987 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ) |
123 | 122 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ) |
124 | 121, 123 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ) |
125 | 124 | fmpttd 6989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ) |
126 | | ioossre 13140 |
. . . . . . . . . 10
⊢ (𝑀(,)𝑁) ⊆ ℝ |
127 | | dvfre 25115 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
128 | 125, 126,
127 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
129 | | dvfsumle.b |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
130 | 129 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
131 | 130 | dmeqd 5814 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
132 | | dvfsumle.v |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) |
133 | 132 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) |
134 | 133 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ 𝑉) |
135 | | dmmptg 6145 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐵 ∈ 𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
136 | 134, 135 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
137 | 131, 136 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁)) |
138 | 130, 137 | feq12d 6588 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)) |
139 | 128, 138 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ) |
140 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) |
141 | 140 | fmpt 6984 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ) |
142 | 139, 141 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ) |
143 | | nfcsb1v 3857 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
144 | 143 | nfel1 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ |
145 | | csbeq1a 3846 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
146 | 145 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℝ ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ)) |
147 | 144, 146 | rspc 3549 |
. . . . . . 7
⊢ (𝑦 ∈ (𝑀(,)𝑁) → (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ)) |
148 | 142, 147 | mpan9 507 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ) |
149 | 107, 20, 22 | cbvmpt 5185 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐴) |
150 | 149 | oveq2i 7286 |
. . . . . . 7
⊢ (ℝ
D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐴)) |
151 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐵 |
152 | 151, 143,
145 | cbvmpt 5185 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐵) |
153 | 130, 150,
152 | 3eqtr3g 2801 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
154 | 81, 120, 148, 153, 88, 100, 54, 102 | dvmptres 25127 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
155 | | dvfsumle.l |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋 ≤ 𝐵) |
156 | 155 | anassrs 468 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋 ≤ 𝐵) |
157 | 156 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋 ≤ 𝐵) |
158 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑋 |
159 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥
≤ |
160 | 158, 159,
143 | nfbr 5121 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵 |
161 | 145 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑋 ≤ 𝐵 ↔ 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵)) |
162 | 160, 161 | rspc 3549 |
. . . . . 6
⊢ (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋 ≤ 𝐵 → 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵)) |
163 | 157, 162 | mpan9 507 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵) |
164 | 41 | rexrd 11025 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*) |
165 | 49 | rexrd 11025 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈
ℝ*) |
166 | 41 | lep1d 11906 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1)) |
167 | | lbicc2 13196 |
. . . . . 6
⊢ ((𝑘 ∈ ℝ*
∧ (𝑘 + 1) ∈
ℝ* ∧ 𝑘
≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1))) |
168 | 164, 165,
166, 167 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1))) |
169 | | ubicc2 13197 |
. . . . . 6
⊢ ((𝑘 ∈ ℝ*
∧ (𝑘 + 1) ∈
ℝ* ∧ 𝑘
≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1))) |
170 | 164, 165,
166, 169 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1))) |
171 | | oveq2 7283 |
. . . . 5
⊢ (𝑦 = 𝑘 → (𝑋 · 𝑦) = (𝑋 · 𝑘)) |
172 | | oveq2 7283 |
. . . . 5
⊢ (𝑦 = (𝑘 + 1) → (𝑋 · 𝑦) = (𝑋 · (𝑘 + 1))) |
173 | 41, 49, 79, 106, 114, 154, 163, 168, 170, 166, 171, 34, 172, 29 | dvle 25171 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) ≤ (⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴)) |
174 | 53, 173 | eqbrtrrd 5098 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ≤ (⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴)) |
175 | 2, 3, 38, 174 | fsumle 15511 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ Σ𝑘 ∈ (𝑀..^𝑁)(⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴)) |
176 | | vex 3436 |
. . . . 5
⊢ 𝑦 ∈ V |
177 | 176 | a1i 11 |
. . . 4
⊢ (𝑦 = 𝑀 → 𝑦 ∈ V) |
178 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑦 = 𝑀 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑀)) |
179 | 178 | biimpa 477 |
. . . . 5
⊢ ((𝑦 = 𝑀 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑀) |
180 | | dvfsumle.c |
. . . . 5
⊢ (𝑥 = 𝑀 → 𝐴 = 𝐶) |
181 | 179, 180 | syl 17 |
. . . 4
⊢ ((𝑦 = 𝑀 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐶) |
182 | 177, 181 | csbied 3870 |
. . 3
⊢ (𝑦 = 𝑀 → ⦋𝑦 / 𝑥⦌𝐴 = 𝐶) |
183 | 176 | a1i 11 |
. . . 4
⊢ (𝑦 = 𝑁 → 𝑦 ∈ V) |
184 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑁)) |
185 | 184 | biimpa 477 |
. . . . 5
⊢ ((𝑦 = 𝑁 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑁) |
186 | | dvfsumle.d |
. . . . 5
⊢ (𝑥 = 𝑁 → 𝐴 = 𝐷) |
187 | 185, 186 | syl 17 |
. . . 4
⊢ ((𝑦 = 𝑁 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐷) |
188 | 183, 187 | csbied 3870 |
. . 3
⊢ (𝑦 = 𝑁 → ⦋𝑦 / 𝑥⦌𝐴 = 𝐷) |
189 | 26 | recnd 11003 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀...𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ) |
190 | 34, 29, 182, 188, 4, 189 | telfsumo2 15515 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴) = (𝐷 − 𝐶)) |
191 | 175, 190 | breqtrd 5100 |
1
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷 − 𝐶)) |