MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumle Structured version   Visualization version   GIF version

Theorem dvfsumle 26061
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) Avoid ax-mulf 11236. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
dvfsumle.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvfsumle.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumle.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumle.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumle.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
dvfsumle.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
Assertion
Ref Expression
dvfsumle (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑥,𝑘)   𝑋(𝑘)

Proof of Theorem dvfsumle
Dummy variables 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 14016 . . . 4 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . 3 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumle.x . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
4 dvfsumle.m . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12884 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12889 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
9 fzval2 13551 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4236 . . . . . . . . 9 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11eqsstrdi 4027 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3982 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumle.a . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
15 cncff 24920 . . . . . . . . . 10 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
17 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 7129 . . . . . . . . 9 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1916, 18sylibr 234 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
20 nfcsb1v 3922 . . . . . . . . . 10 𝑥𝑦 / 𝑥𝐴
2120nfel1 2921 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐴 ∈ ℝ
22 csbeq1a 3912 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2825 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝑦 / 𝑥𝐴 ∈ ℝ))
2421, 23rspc 3609 . . . . . . . 8 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑦 / 𝑥𝐴 ∈ ℝ))
2519, 24mpan9 506 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2613, 25syldan 591 . . . . . 6 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2726ralrimiva 3145 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ)
28 fzofzp1 13804 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3901 . . . . . . 7 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2825 . . . . . 6 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℝ))
3130rspccva 3620 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
3227, 28, 31syl2an 596 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
33 elfzofz 13716 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3901 . . . . . . 7 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2825 . . . . . 6 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑘 / 𝑥𝐴 ∈ ℝ))
3635rspccva 3620 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3727, 33, 36syl2an 596 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3832, 37resubcld 11692 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℝ)
39 elfzoelz 13700 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
4039adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
4140zred 12724 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
4241recnd 11290 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
43 ax-1cn 11214 . . . . . . 7 1 ∈ ℂ
44 pncan2 11516 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 𝑘) = 1)
4542, 43, 44sylancl 586 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
4645oveq2d 7448 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
473recnd 11290 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
48 peano2re 11435 . . . . . . . 8 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4941, 48syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
5049recnd 11290 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
5147, 50, 42subdid 11720 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
5247mulridd 11279 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
5346, 51, 523eqtr3d 2784 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
5447adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → 𝑋 ∈ ℂ)
5541, 49iccssred 13475 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
56 ax-resscn 11213 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
5755, 56sstrdi 3995 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℂ)
5857sselda 3982 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → 𝑦 ∈ ℂ)
59 ovmpot 7595 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑋 · 𝑦))
6054, 58, 59syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑋 · 𝑦))
6160eqeq2d 2747 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → (𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ↔ 𝑧 = (𝑋 · 𝑦)))
6261pm5.32da 579 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) ↔ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋 · 𝑦))))
6362opabbidv 5208 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))} = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋 · 𝑦))})
64 df-mpt 5225 . . . . . . 7 (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋 · 𝑦))}
6563, 64eqtr4di 2794 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))} = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)))
66 df-mpt 5225 . . . . . . 7 (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))}
67 eqid 2736 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867mpomulcn 24892 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6956a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
70 cncfmptc 24939 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ (𝑘[,](𝑘 + 1)) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
713, 57, 69, 70syl3anc 1372 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
72 cncfmptid 24940 . . . . . . . . 9 (((𝑘[,](𝑘 + 1)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
7355, 56, 72sylancl 586 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
74 simpl 482 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑋 ∈ ℝ)
7574recnd 11290 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑋 ∈ ℂ)
76 simpr 484 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
7776recnd 11290 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
7859eqcomd 2742 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑋 · 𝑦) = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))
7975, 77, 78syl2anc 584 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))
80 remulcl 11241 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) ∈ ℝ)
8179, 80eqeltrrd 2841 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℝ)
8267, 68, 71, 73, 56, 81cncfmpt2ss 24943 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
8366, 82eqeltrrid 2845 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))} ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
8465, 83eqeltrrd 2841 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
85 reelprrecn 11248 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8685a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
876zred 12724 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
8887adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
8988rexrd 11312 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
90 elfzole1 13708 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
9190adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
92 iooss1 13423 . . . . . . . . . . 11 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
9389, 91, 92syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
948zred 12724 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
9695rexrd 11312 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
9728adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
98 elfzle2 13569 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
9997, 98syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
100 iooss2 13424 . . . . . . . . . . 11 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
10196, 99, 100syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
10293, 101sstrd 3993 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
103 ioossicc 13474 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
10487, 94iccssred 13475 . . . . . . . . . . . 12 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
105104adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
106105, 56sstrdi 3995 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
107103, 106sstrid 3994 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
108102, 107sstrd 3993 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℂ)
109108sselda 3982 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑦 ∈ ℂ)
110 1cnd 11257 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 1 ∈ ℂ)
11169sselda 3982 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
112 1cnd 11257 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
11386dvmptid 25996 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
114 ioossre 13449 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ⊆ ℝ
115114a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℝ)
116 tgioo4 24827 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
117 iooretop 24787 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
118117a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
11986, 111, 112, 113, 115, 116, 67, 118dvmptres 26002 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 1))
12086, 109, 110, 119, 47dvmptcmul 26003 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)))
12152mpteq2dv 5243 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
122120, 121eqtrd 2776 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
123 nfcv 2904 . . . . . . 7 𝑦𝐴
124123, 20, 22cbvmpt 5252 . . . . . 6 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)
125 iccss 13456 . . . . . . . . 9 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
12688, 95, 91, 99, 125syl22anc 838 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
127126resmptd 6057 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴))
12814adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
129 rescncf 24924 . . . . . . . 8 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)))
130126, 128, 129sylc 65 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
131127, 130eqeltrrd 2841 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
132124, 131eqeltrrid 2845 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
13316adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
134133, 18sylibr 234 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
135103sseli 3978 . . . . . . . 8 (𝑦 ∈ (𝑀(,)𝑁) → 𝑦 ∈ (𝑀[,]𝑁))
13624impcom 407 . . . . . . . 8 ((∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ∧ 𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
137134, 135, 136syl2an 596 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
138137recnd 11290 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
139103sseli 3978 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
14016fvmptelcdm 7132 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
141140adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
142139, 141sylan2 593 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
143142fmpttd 7134 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
144 ioossre 13449 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ ℝ
145 dvfre 25990 . . . . . . . . . 10 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
146143, 144, 145sylancl 586 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
147 dvfsumle.b . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
148147adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
149148dmeqd 5915 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
150 dvfsumle.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
151150adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
152151ralrimiva 3145 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉)
153 dmmptg 6261 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
154152, 153syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
155149, 154eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
156148, 155feq12d 6723 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
157146, 156mpbid 232 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
158 eqid 2736 . . . . . . . . 9 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)
159158fmpt 7129 . . . . . . . 8 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
160157, 159sylibr 234 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ)
161 nfcsb1v 3922 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐵
162161nfel1 2921 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵 ∈ ℝ
163 csbeq1a 3912 . . . . . . . . 9 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
164163eleq1d 2825 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵 ∈ ℝ ↔ 𝑦 / 𝑥𝐵 ∈ ℝ))
165162, 164rspc 3609 . . . . . . 7 (𝑦 ∈ (𝑀(,)𝑁) → (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ → 𝑦 / 𝑥𝐵 ∈ ℝ))
166160, 165mpan9 506 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐵 ∈ ℝ)
167123, 20, 22cbvmpt 5252 . . . . . . . 8 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)
168167oveq2i 7443 . . . . . . 7 (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴))
169 nfcv 2904 . . . . . . . 8 𝑦𝐵
170169, 161, 163cbvmpt 5252 . . . . . . 7 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵)
171148, 168, 1703eqtr3g 2799 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵))
17286, 138, 166, 171, 102, 116, 67, 118dvmptres 26002 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐵))
173 dvfsumle.l . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
174173anassrs 467 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝐵)
175174ralrimiva 3145 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵)
176 nfcv 2904 . . . . . . . 8 𝑥𝑋
177 nfcv 2904 . . . . . . . 8 𝑥
178176, 177, 161nfbr 5189 . . . . . . 7 𝑥 𝑋𝑦 / 𝑥𝐵
179163breq2d 5154 . . . . . . 7 (𝑥 = 𝑦 → (𝑋𝐵𝑋𝑦 / 𝑥𝐵))
180178, 179rspc 3609 . . . . . 6 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵𝑋𝑦 / 𝑥𝐵))
181175, 180mpan9 506 . . . . 5 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝑦 / 𝑥𝐵)
18241rexrd 11312 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
18349rexrd 11312 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
18441lep1d 12200 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
185 lbicc2 13505 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
186182, 183, 184, 185syl3anc 1372 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
187 ubicc2 13506 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
188182, 183, 184, 187syl3anc 1372 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
189 oveq2 7440 . . . . 5 (𝑦 = 𝑘 → (𝑋 · 𝑦) = (𝑋 · 𝑘))
190 oveq2 7440 . . . . 5 (𝑦 = (𝑘 + 1) → (𝑋 · 𝑦) = (𝑋 · (𝑘 + 1)))
19141, 49, 84, 122, 132, 172, 181, 186, 188, 184, 189, 34, 190, 29dvle 26047 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
19253, 191eqbrtrrd 5166 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
1932, 3, 38, 192fsumle 15836 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
194 vex 3483 . . . . 5 𝑦 ∈ V
195194a1i 11 . . . 4 (𝑦 = 𝑀𝑦 ∈ V)
196 eqeq2 2748 . . . . . 6 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
197196biimpa 476 . . . . 5 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
198 dvfsumle.c . . . . 5 (𝑥 = 𝑀𝐴 = 𝐶)
199197, 198syl 17 . . . 4 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
200195, 199csbied 3934 . . 3 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
201194a1i 11 . . . 4 (𝑦 = 𝑁𝑦 ∈ V)
202 eqeq2 2748 . . . . . 6 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
203202biimpa 476 . . . . 5 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
204 dvfsumle.d . . . . 5 (𝑥 = 𝑁𝐴 = 𝐷)
205203, 204syl 17 . . . 4 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
206201, 205csbied 3934 . . 3 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
20726recnd 11290 . . 3 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
20834, 29, 200, 206, 4, 207telfsumo2 15840 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
209193, 208breqtrd 5168 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  csb 3898  cin 3949  wss 3950  {cpr 4627   class class class wbr 5142  {copab 5204  cmpt 5224  dom cdm 5684  ran crn 5685  cres 5686  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  Fincfn 8986  cc 11154  cr 11155  1c1 11157   + caddc 11159   · cmul 11161  *cxr 11295  cle 11297  cmin 11493  cz 12615  cuz 12879  (,)cioo 13388  [,]cicc 13391  ...cfz 13548  ..^cfzo 13695  Σcsu 15723  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21365  cnccncf 24903   D cdv 25899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903
This theorem is referenced by:  dvfsumge  26063
  Copyright terms: Public domain W3C validator