| Step | Hyp | Ref
| Expression |
| 1 | | fzofi 14016 |
. . . 4
⊢ (𝑀..^𝑁) ∈ Fin |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
| 3 | | dvfsumle.x |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ) |
| 4 | | dvfsumle.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | | eluzel2 12884 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 7 | | eluzelz 12889 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 8 | 4, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 9 | | fzval2 13551 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
| 10 | 6, 8, 9 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ)) |
| 11 | | inss1 4236 |
. . . . . . . . 9
⊢ ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁) |
| 12 | 10, 11 | eqsstrdi 4027 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁)) |
| 13 | 12 | sselda 3982 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁)) |
| 14 | | dvfsumle.a |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
| 15 | | cncff 24920 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
| 17 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) |
| 18 | 17 | fmpt 7129 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
| 19 | 16, 18 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ) |
| 20 | | nfcsb1v 3922 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 |
| 21 | 20 | nfel1 2921 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ |
| 22 | | csbeq1a 3912 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) |
| 23 | 22 | eleq1d 2825 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ)) |
| 24 | 21, 23 | rspc 3609 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ)) |
| 25 | 19, 24 | mpan9 506 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀[,]𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
| 26 | 13, 25 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀...𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
| 27 | 26 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
| 28 | | fzofzp1 13804 |
. . . . 5
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
| 29 | | csbeq1 3901 |
. . . . . . 7
⊢ (𝑦 = (𝑘 + 1) → ⦋𝑦 / 𝑥⦌𝐴 = ⦋(𝑘 + 1) / 𝑥⦌𝐴) |
| 30 | 29 | eleq1d 2825 |
. . . . . 6
⊢ (𝑦 = (𝑘 + 1) → (⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ↔ ⦋(𝑘 + 1) / 𝑥⦌𝐴 ∈ ℝ)) |
| 31 | 30 | rspccva 3620 |
. . . . 5
⊢
((∀𝑦 ∈
(𝑀...𝑁)⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → ⦋(𝑘 + 1) / 𝑥⦌𝐴 ∈ ℝ) |
| 32 | 27, 28, 31 | syl2an 596 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ⦋(𝑘 + 1) / 𝑥⦌𝐴 ∈ ℝ) |
| 33 | | elfzofz 13716 |
. . . . 5
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁)) |
| 34 | | csbeq1 3901 |
. . . . . . 7
⊢ (𝑦 = 𝑘 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑘 / 𝑥⦌𝐴) |
| 35 | 34 | eleq1d 2825 |
. . . . . 6
⊢ (𝑦 = 𝑘 → (⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ↔ ⦋𝑘 / 𝑥⦌𝐴 ∈ ℝ)) |
| 36 | 35 | rspccva 3620 |
. . . . 5
⊢
((∀𝑦 ∈
(𝑀...𝑁)⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ ∧ 𝑘 ∈ (𝑀...𝑁)) → ⦋𝑘 / 𝑥⦌𝐴 ∈ ℝ) |
| 37 | 27, 33, 36 | syl2an 596 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ⦋𝑘 / 𝑥⦌𝐴 ∈ ℝ) |
| 38 | 32, 37 | resubcld 11692 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴) ∈ ℝ) |
| 39 | | elfzoelz 13700 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ) |
| 40 | 39 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ) |
| 41 | 40 | zred 12724 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ) |
| 42 | 41 | recnd 11290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ) |
| 43 | | ax-1cn 11214 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 44 | | pncan2 11516 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 𝑘) =
1) |
| 45 | 42, 43, 44 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1) |
| 46 | 45 | oveq2d 7448 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1)) |
| 47 | 3 | recnd 11290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ) |
| 48 | | peano2re 11435 |
. . . . . . . 8
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
| 49 | 41, 48 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ) |
| 50 | 49 | recnd 11290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ) |
| 51 | 47, 50, 42 | subdid 11720 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘))) |
| 52 | 47 | mulridd 11279 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋) |
| 53 | 46, 51, 52 | 3eqtr3d 2784 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋) |
| 54 | 47 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → 𝑋 ∈ ℂ) |
| 55 | 41, 49 | iccssred 13475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ) |
| 56 | | ax-resscn 11213 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
| 57 | 55, 56 | sstrdi 3995 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℂ) |
| 58 | 57 | sselda 3982 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → 𝑦 ∈ ℂ) |
| 59 | | ovmpot 7595 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑋 · 𝑦)) |
| 60 | 54, 58, 59 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑋 · 𝑦)) |
| 61 | 60 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘[,](𝑘 + 1))) → (𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ↔ 𝑧 = (𝑋 · 𝑦))) |
| 62 | 61 | pm5.32da 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) ↔ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋 · 𝑦)))) |
| 63 | 62 | opabbidv 5208 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋 · 𝑦))}) |
| 64 | | df-mpt 5225 |
. . . . . . 7
⊢ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋 · 𝑦))} |
| 65 | 63, 64 | eqtr4di 2794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))} = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦))) |
| 66 | | df-mpt 5225 |
. . . . . . 7
⊢ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))} |
| 67 | | eqid 2736 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 68 | 67 | mpomulcn 24892 |
. . . . . . . 8
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 69 | 56 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆
ℂ) |
| 70 | | cncfmptc 24939 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ ∧ (𝑘[,](𝑘 + 1)) ⊆ ℂ ∧ ℝ ⊆
ℂ) → (𝑦 ∈
(𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 71 | 3, 57, 69, 70 | syl3anc 1372 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 72 | | cncfmptid 24940 |
. . . . . . . . 9
⊢ (((𝑘[,](𝑘 + 1)) ⊆ ℝ ∧ ℝ ⊆
ℂ) → (𝑦 ∈
(𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 73 | 55, 56, 72 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 74 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑋 ∈
ℝ) |
| 75 | 74 | recnd 11290 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑋 ∈
ℂ) |
| 76 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
| 77 | 76 | recnd 11290 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℂ) |
| 78 | 59 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑋 · 𝑦) = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) |
| 79 | 75, 77, 78 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) |
| 80 | | remulcl 11241 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) ∈ ℝ) |
| 81 | 79, 80 | eqeltrrd 2841 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℝ) |
| 82 | 67, 68, 71, 73, 56, 81 | cncfmpt2ss 24943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 83 | 66, 82 | eqeltrrid 2845 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑧 = (𝑋(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))} ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 84 | 65, 83 | eqeltrrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 85 | | reelprrecn 11248 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
| 86 | 85 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ,
ℂ}) |
| 87 | 6 | zred 12724 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 88 | 87 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ) |
| 89 | 88 | rexrd 11312 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈
ℝ*) |
| 90 | | elfzole1 13708 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝑘) |
| 91 | 90 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ≤ 𝑘) |
| 92 | | iooss1 13423 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ*
∧ 𝑀 ≤ 𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1))) |
| 93 | 89, 91, 92 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1))) |
| 94 | 8 | zred 12724 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 95 | 94 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ) |
| 96 | 95 | rexrd 11312 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈
ℝ*) |
| 97 | 28 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
| 98 | | elfzle2 13569 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁) |
| 99 | 97, 98 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁) |
| 100 | | iooss2 13424 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℝ*
∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
| 101 | 96, 99, 100 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
| 102 | 93, 101 | sstrd 3993 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁)) |
| 103 | | ioossicc 13474 |
. . . . . . . . . 10
⊢ (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) |
| 104 | 87, 94 | iccssred 13475 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ ℝ) |
| 105 | 104 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ) |
| 106 | 105, 56 | sstrdi 3995 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ) |
| 107 | 103, 106 | sstrid 3994 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ) |
| 108 | 102, 107 | sstrd 3993 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℂ) |
| 109 | 108 | sselda 3982 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑦 ∈ ℂ) |
| 110 | | 1cnd 11257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 1 ∈
ℂ) |
| 111 | 69 | sselda 3982 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
| 112 | | 1cnd 11257 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 1 ∈
ℂ) |
| 113 | 86 | dvmptid 25996 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1)) |
| 114 | | ioossre 13449 |
. . . . . . . . 9
⊢ (𝑘(,)(𝑘 + 1)) ⊆ ℝ |
| 115 | 114 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℝ) |
| 116 | | tgioo4 24827 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 117 | | iooretop 24787 |
. . . . . . . . 9
⊢ (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran
(,)) |
| 118 | 117 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran
(,))) |
| 119 | 86, 111, 112, 113, 115, 116, 67, 118 | dvmptres 26002 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 1)) |
| 120 | 86, 109, 110, 119, 47 | dvmptcmul 26003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1))) |
| 121 | 52 | mpteq2dv 5243 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋)) |
| 122 | 120, 121 | eqtrd 2776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋)) |
| 123 | | nfcv 2904 |
. . . . . . 7
⊢
Ⅎ𝑦𝐴 |
| 124 | 123, 20, 22 | cbvmpt 5252 |
. . . . . 6
⊢ (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐴) |
| 125 | | iccss 13456 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀 ≤ 𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁)) |
| 126 | 88, 95, 91, 99, 125 | syl22anc 838 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁)) |
| 127 | 126 | resmptd 6057 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴)) |
| 128 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
| 129 | | rescncf 24924 |
. . . . . . . 8
⊢ ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))) |
| 130 | 126, 128,
129 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 131 | 127, 130 | eqeltrrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 132 | 124, 131 | eqeltrrid 2845 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)) |
| 133 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
| 134 | 133, 18 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ) |
| 135 | 103 | sseli 3978 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑀(,)𝑁) → 𝑦 ∈ (𝑀[,]𝑁)) |
| 136 | 24 | impcom 407 |
. . . . . . . 8
⊢
((∀𝑥 ∈
(𝑀[,]𝑁)𝐴 ∈ ℝ ∧ 𝑦 ∈ (𝑀[,]𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
| 137 | 134, 135,
136 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℝ) |
| 138 | 137 | recnd 11290 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ) |
| 139 | 103 | sseli 3978 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁)) |
| 140 | 16 | fvmptelcdm 7132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ) |
| 141 | 140 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ) |
| 142 | 139, 141 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ) |
| 143 | 142 | fmpttd 7134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ) |
| 144 | | ioossre 13449 |
. . . . . . . . . 10
⊢ (𝑀(,)𝑁) ⊆ ℝ |
| 145 | | dvfre 25990 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
| 146 | 143, 144,
145 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
| 147 | | dvfsumle.b |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
| 148 | 147 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
| 149 | 148 | dmeqd 5915 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
| 150 | | dvfsumle.v |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) |
| 151 | 150 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) |
| 152 | 151 | ralrimiva 3145 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ 𝑉) |
| 153 | | dmmptg 6261 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐵 ∈ 𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
| 154 | 152, 153 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
| 155 | 149, 154 | eqtrd 2776 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁)) |
| 156 | 148, 155 | feq12d 6723 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)) |
| 157 | 146, 156 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ) |
| 158 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) |
| 159 | 158 | fmpt 7129 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ) |
| 160 | 157, 159 | sylibr 234 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ) |
| 161 | | nfcsb1v 3922 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 162 | 161 | nfel1 2921 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ |
| 163 | | csbeq1a 3912 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 164 | 163 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℝ ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ)) |
| 165 | 162, 164 | rspc 3609 |
. . . . . . 7
⊢ (𝑦 ∈ (𝑀(,)𝑁) → (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ)) |
| 166 | 160, 165 | mpan9 506 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ) |
| 167 | 123, 20, 22 | cbvmpt 5252 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐴) |
| 168 | 167 | oveq2i 7443 |
. . . . . . 7
⊢ (ℝ
D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐴)) |
| 169 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐵 |
| 170 | 169, 161,
163 | cbvmpt 5252 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 171 | 148, 168,
170 | 3eqtr3g 2799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑦 ∈ (𝑀(,)𝑁) ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
| 172 | 86, 138, 166, 171, 102, 116, 67, 118 | dvmptres 26002 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
| 173 | | dvfsumle.l |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋 ≤ 𝐵) |
| 174 | 173 | anassrs 467 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋 ≤ 𝐵) |
| 175 | 174 | ralrimiva 3145 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋 ≤ 𝐵) |
| 176 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑋 |
| 177 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑥
≤ |
| 178 | 176, 177,
161 | nfbr 5189 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵 |
| 179 | 163 | breq2d 5154 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑋 ≤ 𝐵 ↔ 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵)) |
| 180 | 178, 179 | rspc 3609 |
. . . . . 6
⊢ (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋 ≤ 𝐵 → 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵)) |
| 181 | 175, 180 | mpan9 506 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋 ≤ ⦋𝑦 / 𝑥⦌𝐵) |
| 182 | 41 | rexrd 11312 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*) |
| 183 | 49 | rexrd 11312 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈
ℝ*) |
| 184 | 41 | lep1d 12200 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1)) |
| 185 | | lbicc2 13505 |
. . . . . 6
⊢ ((𝑘 ∈ ℝ*
∧ (𝑘 + 1) ∈
ℝ* ∧ 𝑘
≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1))) |
| 186 | 182, 183,
184, 185 | syl3anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1))) |
| 187 | | ubicc2 13506 |
. . . . . 6
⊢ ((𝑘 ∈ ℝ*
∧ (𝑘 + 1) ∈
ℝ* ∧ 𝑘
≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1))) |
| 188 | 182, 183,
184, 187 | syl3anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1))) |
| 189 | | oveq2 7440 |
. . . . 5
⊢ (𝑦 = 𝑘 → (𝑋 · 𝑦) = (𝑋 · 𝑘)) |
| 190 | | oveq2 7440 |
. . . . 5
⊢ (𝑦 = (𝑘 + 1) → (𝑋 · 𝑦) = (𝑋 · (𝑘 + 1))) |
| 191 | 41, 49, 84, 122, 132, 172, 181, 186, 188, 184, 189, 34, 190, 29 | dvle 26047 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) ≤ (⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴)) |
| 192 | 53, 191 | eqbrtrrd 5166 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ≤ (⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴)) |
| 193 | 2, 3, 38, 192 | fsumle 15836 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ Σ𝑘 ∈ (𝑀..^𝑁)(⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴)) |
| 194 | | vex 3483 |
. . . . 5
⊢ 𝑦 ∈ V |
| 195 | 194 | a1i 11 |
. . . 4
⊢ (𝑦 = 𝑀 → 𝑦 ∈ V) |
| 196 | | eqeq2 2748 |
. . . . . 6
⊢ (𝑦 = 𝑀 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑀)) |
| 197 | 196 | biimpa 476 |
. . . . 5
⊢ ((𝑦 = 𝑀 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑀) |
| 198 | | dvfsumle.c |
. . . . 5
⊢ (𝑥 = 𝑀 → 𝐴 = 𝐶) |
| 199 | 197, 198 | syl 17 |
. . . 4
⊢ ((𝑦 = 𝑀 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐶) |
| 200 | 195, 199 | csbied 3934 |
. . 3
⊢ (𝑦 = 𝑀 → ⦋𝑦 / 𝑥⦌𝐴 = 𝐶) |
| 201 | 194 | a1i 11 |
. . . 4
⊢ (𝑦 = 𝑁 → 𝑦 ∈ V) |
| 202 | | eqeq2 2748 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑁)) |
| 203 | 202 | biimpa 476 |
. . . . 5
⊢ ((𝑦 = 𝑁 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑁) |
| 204 | | dvfsumle.d |
. . . . 5
⊢ (𝑥 = 𝑁 → 𝐴 = 𝐷) |
| 205 | 203, 204 | syl 17 |
. . . 4
⊢ ((𝑦 = 𝑁 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐷) |
| 206 | 201, 205 | csbied 3934 |
. . 3
⊢ (𝑦 = 𝑁 → ⦋𝑦 / 𝑥⦌𝐴 = 𝐷) |
| 207 | 26 | recnd 11290 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑀...𝑁)) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ) |
| 208 | 34, 29, 200, 206, 4, 207 | telfsumo2 15840 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(⦋(𝑘 + 1) / 𝑥⦌𝐴 − ⦋𝑘 / 𝑥⦌𝐴) = (𝐷 − 𝐶)) |
| 209 | 193, 208 | breqtrd 5168 |
1
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷 − 𝐶)) |