| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ppisval | Structured version Visualization version GIF version | ||
| Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| ppisval | ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) | |
| 2 | 1 | elin2d 4171 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ) |
| 3 | prmuz2 16673 | . . . . . . 7 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ≥‘2)) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ≥‘2)) |
| 5 | prmz 16652 | . . . . . . . 8 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℤ) | |
| 6 | 2, 5 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ) |
| 7 | flcl 13764 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ) |
| 9 | 1 | elin1d 4170 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴)) |
| 10 | 0re 11183 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 11 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ) | |
| 12 | elicc2 13379 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
| 14 | 9, 13 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴)) |
| 15 | 14 | simp3d 1144 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ 𝐴) |
| 16 | flge 13774 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) | |
| 17 | 6, 16 | syldan 591 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) |
| 18 | 15, 17 | mpbid 232 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴)) |
| 19 | eluz2 12806 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ (ℤ≥‘𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴))) | |
| 20 | 6, 8, 18, 19 | syl3anbrc 1344 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) |
| 21 | elfzuzb 13486 | . . . . . 6 ⊢ (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ≥‘2) ∧ (⌊‘𝐴) ∈ (ℤ≥‘𝑥))) | |
| 22 | 4, 20, 21 | sylanbrc 583 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴))) |
| 23 | 22, 2 | elind 4166 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)) |
| 24 | 23 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))) |
| 25 | 24 | ssrdv 3955 | . 2 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ)) |
| 26 | 2z 12572 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 27 | fzval2 13478 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) | |
| 28 | 26, 7, 27 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) |
| 29 | inss1 4203 | . . . . 5 ⊢ ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴)) | |
| 30 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
| 31 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 32 | 0le2 12295 | . . . . . . 7 ⊢ 0 ≤ 2 | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ≤ 2) |
| 34 | flle 13768 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 35 | iccss 13382 | . . . . . 6 ⊢ (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) | |
| 36 | 30, 31, 33, 34, 35 | syl22anc 838 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) |
| 37 | 29, 36 | sstrid 3961 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴)) |
| 38 | 28, 37 | eqsstrd 3984 | . . 3 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴)) |
| 39 | 38 | ssrind 4210 | . 2 ⊢ (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ)) |
| 40 | 25, 39 | eqssd 3967 | 1 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 ≤ cle 11216 2c2 12248 ℤcz 12536 ℤ≥cuz 12800 [,]cicc 13316 ...cfz 13475 ⌊cfl 13759 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-icc 13320 df-fz 13476 df-fl 13761 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 |
| This theorem is referenced by: ppisval2 27022 ppifi 27023 ppival2 27045 chtfl 27066 chtprm 27070 chtnprm 27071 ppifl 27077 cht1 27082 chtlepsi 27124 chpval2 27136 chpub 27138 chtvalz 34627 |
| Copyright terms: Public domain | W3C validator |