![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppisval | Structured version Visualization version GIF version |
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
ppisval | ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) | |
2 | 1 | elin2d 4228 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ) |
3 | prmuz2 16743 | . . . . . . 7 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ≥‘2)) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ≥‘2)) |
5 | prmz 16722 | . . . . . . . 8 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℤ) | |
6 | 2, 5 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ) |
7 | flcl 13846 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ) |
9 | 1 | elin1d 4227 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴)) |
10 | 0re 11292 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
11 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ) | |
12 | elicc2 13472 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
13 | 10, 11, 12 | sylancr 586 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
14 | 9, 13 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴)) |
15 | 14 | simp3d 1144 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ 𝐴) |
16 | flge 13856 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) | |
17 | 6, 16 | syldan 590 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) |
18 | 15, 17 | mpbid 232 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴)) |
19 | eluz2 12909 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ (ℤ≥‘𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴))) | |
20 | 6, 8, 18, 19 | syl3anbrc 1343 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) |
21 | elfzuzb 13578 | . . . . . 6 ⊢ (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ≥‘2) ∧ (⌊‘𝐴) ∈ (ℤ≥‘𝑥))) | |
22 | 4, 20, 21 | sylanbrc 582 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴))) |
23 | 22, 2 | elind 4223 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)) |
24 | 23 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))) |
25 | 24 | ssrdv 4014 | . 2 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ)) |
26 | 2z 12675 | . . . . 5 ⊢ 2 ∈ ℤ | |
27 | fzval2 13570 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) | |
28 | 26, 7, 27 | sylancr 586 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) |
29 | inss1 4258 | . . . . 5 ⊢ ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴)) | |
30 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
31 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
32 | 0le2 12395 | . . . . . . 7 ⊢ 0 ≤ 2 | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ≤ 2) |
34 | flle 13850 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
35 | iccss 13475 | . . . . . 6 ⊢ (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) | |
36 | 30, 31, 33, 34, 35 | syl22anc 838 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) |
37 | 29, 36 | sstrid 4020 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴)) |
38 | 28, 37 | eqsstrd 4047 | . . 3 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴)) |
39 | 38 | ssrind 4265 | . 2 ⊢ (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ)) |
40 | 25, 39 | eqssd 4026 | 1 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 ≤ cle 11325 2c2 12348 ℤcz 12639 ℤ≥cuz 12903 [,]cicc 13410 ...cfz 13567 ⌊cfl 13841 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-icc 13414 df-fz 13568 df-fl 13843 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 |
This theorem is referenced by: ppisval2 27166 ppifi 27167 ppival2 27189 chtfl 27210 chtprm 27214 chtnprm 27215 ppifl 27221 cht1 27226 chtlepsi 27268 chpval2 27280 chpub 27282 chtvalz 34606 |
Copyright terms: Public domain | W3C validator |