MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppisval Structured version   Visualization version   GIF version

Theorem ppisval 27030
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppisval (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))

Proof of Theorem ppisval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ))
21elin2d 4158 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ)
3 prmuz2 16625 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
42, 3syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ‘2))
5 prmz 16604 . . . . . . . 8 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
62, 5syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ)
7 flcl 13717 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ)
91elin1d 4157 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴))
10 0re 11136 . . . . . . . . . . 11 0 ∈ ℝ
11 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
12 elicc2 13332 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1310, 11, 12sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
149, 13mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
1514simp3d 1144 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥𝐴)
16 flge 13727 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
176, 16syldan 591 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
1815, 17mpbid 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴))
19 eluz2 12759 . . . . . . 7 ((⌊‘𝐴) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴)))
206, 8, 18, 19syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ𝑥))
21 elfzuzb 13439 . . . . . 6 (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ‘2) ∧ (⌊‘𝐴) ∈ (ℤ𝑥)))
224, 20, 21sylanbrc 583 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴)))
2322, 2elind 4153 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))
2423ex 412 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)))
2524ssrdv 3943 . 2 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ))
26 2z 12525 . . . . 5 2 ∈ ℤ
27 fzval2 13431 . . . . 5 ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
2826, 7, 27sylancr 587 . . . 4 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
29 inss1 4190 . . . . 5 ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴))
3010a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ∈ ℝ)
31 id 22 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
32 0le2 12248 . . . . . . 7 0 ≤ 2
3332a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ 2)
34 flle 13721 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
35 iccss 13335 . . . . . 6 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3630, 31, 33, 34, 35syl22anc 838 . . . . 5 (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3729, 36sstrid 3949 . . . 4 (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴))
3828, 37eqsstrd 3972 . . 3 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴))
3938ssrind 4197 . 2 (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
4025, 39eqssd 3955 1 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  cle 11169  2c2 12201  cz 12489  cuz 12753  [,]cicc 13269  ...cfz 13428  cfl 13712  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-icc 13273  df-fz 13429  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-prm 16601
This theorem is referenced by:  ppisval2  27031  ppifi  27032  ppival2  27054  chtfl  27075  chtprm  27079  chtnprm  27080  ppifl  27086  cht1  27091  chtlepsi  27133  chpval2  27145  chpub  27147  chtvalz  34596
  Copyright terms: Public domain W3C validator