![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppisval | Structured version Visualization version GIF version |
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
ppisval | ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4029 | . . . . . . . 8 ⊢ ((0[,]𝐴) ∩ ℙ) ⊆ ℙ | |
2 | simpr 478 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) | |
3 | 1, 2 | sseldi 3796 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ) |
4 | prmuz2 15742 | . . . . . . 7 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ≥‘2)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ≥‘2)) |
6 | prmz 15723 | . . . . . . . 8 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℤ) | |
7 | 3, 6 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ) |
8 | flcl 12851 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
9 | 8 | adantr 473 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ) |
10 | inss1 4028 | . . . . . . . . . . 11 ⊢ ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴) | |
11 | 10, 2 | sseldi 3796 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴)) |
12 | 0re 10330 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
13 | simpl 475 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ) | |
14 | elicc2 12487 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
15 | 12, 13, 14 | sylancr 582 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
16 | 11, 15 | mpbid 224 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴)) |
17 | 16 | simp3d 1175 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ 𝐴) |
18 | flge 12861 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) | |
19 | 7, 18 | syldan 586 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) |
20 | 17, 19 | mpbid 224 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴)) |
21 | eluz2 11936 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ (ℤ≥‘𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴))) | |
22 | 7, 9, 20, 21 | syl3anbrc 1444 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) |
23 | elfzuzb 12590 | . . . . . 6 ⊢ (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ≥‘2) ∧ (⌊‘𝐴) ∈ (ℤ≥‘𝑥))) | |
24 | 5, 22, 23 | sylanbrc 579 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴))) |
25 | 24, 3 | elind 3996 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)) |
26 | 25 | ex 402 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))) |
27 | 26 | ssrdv 3804 | . 2 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ)) |
28 | 2z 11699 | . . . . 5 ⊢ 2 ∈ ℤ | |
29 | fzval2 12583 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) | |
30 | 28, 8, 29 | sylancr 582 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) |
31 | inss1 4028 | . . . . 5 ⊢ ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴)) | |
32 | 12 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
33 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
34 | 0le2 11422 | . . . . . . 7 ⊢ 0 ≤ 2 | |
35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ≤ 2) |
36 | flle 12855 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
37 | iccss 12490 | . . . . . 6 ⊢ (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) | |
38 | 32, 33, 35, 36, 37 | syl22anc 868 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) |
39 | 31, 38 | syl5ss 3809 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴)) |
40 | 30, 39 | eqsstrd 3835 | . . 3 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴)) |
41 | 40 | ssrind 4035 | . 2 ⊢ (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ)) |
42 | 27, 41 | eqssd 3815 | 1 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∩ cin 3768 ⊆ wss 3769 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 ℝcr 10223 0cc0 10224 ≤ cle 10364 2c2 11368 ℤcz 11666 ℤ≥cuz 11930 [,]cicc 12427 ...cfz 12580 ⌊cfl 12846 ℙcprime 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-icc 12431 df-fz 12581 df-fl 12848 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-dvds 15320 df-prm 15720 |
This theorem is referenced by: ppisval2 25183 ppifi 25184 ppival2 25206 chtfl 25227 chtprm 25231 chtnprm 25232 ppifl 25238 cht1 25243 chtlepsi 25283 chpval2 25295 chpub 25297 chtvalz 31227 |
Copyright terms: Public domain | W3C validator |