MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppisval Structured version   Visualization version   GIF version

Theorem ppisval 27039
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppisval (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))

Proof of Theorem ppisval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ))
21elin2d 4155 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ)
3 prmuz2 16604 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
42, 3syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ‘2))
5 prmz 16583 . . . . . . . 8 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
62, 5syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ)
7 flcl 13696 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ)
91elin1d 4154 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴))
10 0re 11111 . . . . . . . . . . 11 0 ∈ ℝ
11 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
12 elicc2 13308 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1310, 11, 12sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
149, 13mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
1514simp3d 1144 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥𝐴)
16 flge 13706 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
176, 16syldan 591 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
1815, 17mpbid 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴))
19 eluz2 12735 . . . . . . 7 ((⌊‘𝐴) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴)))
206, 8, 18, 19syl3anbrc 1344 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ𝑥))
21 elfzuzb 13415 . . . . . 6 (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ‘2) ∧ (⌊‘𝐴) ∈ (ℤ𝑥)))
224, 20, 21sylanbrc 583 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴)))
2322, 2elind 4150 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))
2423ex 412 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)))
2524ssrdv 3940 . 2 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ))
26 2z 12501 . . . . 5 2 ∈ ℤ
27 fzval2 13407 . . . . 5 ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
2826, 7, 27sylancr 587 . . . 4 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
29 inss1 4187 . . . . 5 ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴))
3010a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ∈ ℝ)
31 id 22 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
32 0le2 12224 . . . . . . 7 0 ≤ 2
3332a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ 2)
34 flle 13700 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
35 iccss 13311 . . . . . 6 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3630, 31, 33, 34, 35syl22anc 838 . . . . 5 (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3729, 36sstrid 3946 . . . 4 (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴))
3828, 37eqsstrd 3969 . . 3 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴))
3938ssrind 4194 . 2 (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
4025, 39eqssd 3952 1 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3901  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  cle 11144  2c2 12177  cz 12465  cuz 12729  [,]cicc 13245  ...cfz 13404  cfl 13691  cprime 16579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-icc 13249  df-fz 13405  df-fl 13693  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-prm 16580
This theorem is referenced by:  ppisval2  27040  ppifi  27041  ppival2  27063  chtfl  27084  chtprm  27088  chtnprm  27089  ppifl  27095  cht1  27100  chtlepsi  27142  chpval2  27154  chpub  27156  chtvalz  34637
  Copyright terms: Public domain W3C validator