| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ppisval | Structured version Visualization version GIF version | ||
| Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| ppisval | ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) | |
| 2 | 1 | elin2d 4154 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ) |
| 3 | prmuz2 16609 | . . . . . . 7 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ≥‘2)) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ≥‘2)) |
| 5 | prmz 16588 | . . . . . . . 8 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ ℤ) | |
| 6 | 2, 5 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ) |
| 7 | flcl 13701 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ) |
| 9 | 1 | elin1d 4153 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴)) |
| 10 | 0re 11121 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 11 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ) | |
| 12 | elicc2 13313 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
| 14 | 9, 13 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴)) |
| 15 | 14 | simp3d 1144 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ 𝐴) |
| 16 | flge 13711 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) | |
| 17 | 6, 16 | syldan 591 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ (⌊‘𝐴))) |
| 18 | 15, 17 | mpbid 232 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴)) |
| 19 | eluz2 12744 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ (ℤ≥‘𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴))) | |
| 20 | 6, 8, 18, 19 | syl3anbrc 1344 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) |
| 21 | elfzuzb 13420 | . . . . . 6 ⊢ (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ≥‘2) ∧ (⌊‘𝐴) ∈ (ℤ≥‘𝑥))) | |
| 22 | 4, 20, 21 | sylanbrc 583 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴))) |
| 23 | 22, 2 | elind 4149 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)) |
| 24 | 23 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))) |
| 25 | 24 | ssrdv 3936 | . 2 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ)) |
| 26 | 2z 12510 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 27 | fzval2 13412 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) | |
| 28 | 26, 7, 27 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ)) |
| 29 | inss1 4186 | . . . . 5 ⊢ ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴)) | |
| 30 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
| 31 | id 22 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 32 | 0le2 12234 | . . . . . . 7 ⊢ 0 ≤ 2 | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ≤ 2) |
| 34 | flle 13705 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 35 | iccss 13316 | . . . . . 6 ⊢ (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) | |
| 36 | 30, 31, 33, 34, 35 | syl22anc 838 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴)) |
| 37 | 29, 36 | sstrid 3942 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴)) |
| 38 | 28, 37 | eqsstrd 3965 | . . 3 ⊢ (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴)) |
| 39 | 38 | ssrind 4193 | . 2 ⊢ (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ)) |
| 40 | 25, 39 | eqssd 3948 | 1 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 ≤ cle 11154 2c2 12187 ℤcz 12475 ℤ≥cuz 12738 [,]cicc 13250 ...cfz 13409 ⌊cfl 13696 ℙcprime 16584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-icc 13254 df-fz 13410 df-fl 13698 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-prm 16585 |
| This theorem is referenced by: ppisval2 27043 ppifi 27044 ppival2 27066 chtfl 27087 chtprm 27091 chtnprm 27092 ppifl 27098 cht1 27103 chtlepsi 27145 chpval2 27157 chpub 27159 chtvalz 34663 |
| Copyright terms: Public domain | W3C validator |