MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppisval Structured version   Visualization version   GIF version

Theorem ppisval 25044
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppisval (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))

Proof of Theorem ppisval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 3982 . . . . . . . 8 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
2 simpr 471 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ))
31, 2sseldi 3750 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ)
4 prmuz2 15608 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
53, 4syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ‘2))
6 prmz 15589 . . . . . . . 8 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
73, 6syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ)
8 flcl 12797 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
98adantr 466 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ)
10 inss1 3981 . . . . . . . . . . 11 ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴)
1110, 2sseldi 3750 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴))
12 0re 10240 . . . . . . . . . . 11 0 ∈ ℝ
13 simpl 468 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
14 elicc2 12436 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1512, 13, 14sylancr 575 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1611, 15mpbid 222 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
1716simp3d 1138 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥𝐴)
18 flge 12807 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
197, 18syldan 579 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
2017, 19mpbid 222 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴))
21 eluz2 11892 . . . . . . 7 ((⌊‘𝐴) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴)))
227, 9, 20, 21syl3anbrc 1428 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ𝑥))
23 elfzuzb 12536 . . . . . 6 (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ‘2) ∧ (⌊‘𝐴) ∈ (ℤ𝑥)))
245, 22, 23sylanbrc 572 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴)))
2524, 3elind 3949 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))
2625ex 397 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)))
2726ssrdv 3758 . 2 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ))
28 2z 11609 . . . . 5 2 ∈ ℤ
29 fzval2 12529 . . . . 5 ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
3028, 8, 29sylancr 575 . . . 4 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
31 inss1 3981 . . . . 5 ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴))
3212a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ∈ ℝ)
33 id 22 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
34 0le2 11311 . . . . . . 7 0 ≤ 2
3534a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ 2)
36 flle 12801 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
37 iccss 12439 . . . . . 6 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3832, 33, 35, 36, 37syl22anc 1477 . . . . 5 (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3931, 38syl5ss 3763 . . . 4 (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴))
4030, 39eqsstrd 3788 . . 3 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴))
4140ssrind 3988 . 2 (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
4227, 41eqssd 3769 1 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  cin 3722  wss 3723   class class class wbr 4786  cfv 6029  (class class class)co 6791  cr 10135  0cc0 10136  cle 10275  2c2 11270  cz 11577  cuz 11886  [,]cicc 12376  ...cfz 12526  cfl 12792  cprime 15585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-icc 12380  df-fz 12527  df-fl 12794  df-seq 13002  df-exp 13061  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-dvds 15183  df-prm 15586
This theorem is referenced by:  ppisval2  25045  ppifi  25046  ppival2  25068  chtfl  25089  chtprm  25093  chtnprm  25094  ppifl  25100  cht1  25105  chtlepsi  25145  chpval2  25157  chpub  25159  chtvalz  31040
  Copyright terms: Public domain W3C validator