MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppisval Structured version   Visualization version   GIF version

Theorem ppisval 25182
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppisval (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))

Proof of Theorem ppisval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 4029 . . . . . . . 8 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
2 simpr 478 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ))
31, 2sseldi 3796 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ)
4 prmuz2 15742 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
53, 4syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ‘2))
6 prmz 15723 . . . . . . . 8 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
73, 6syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ)
8 flcl 12851 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
98adantr 473 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ)
10 inss1 4028 . . . . . . . . . . 11 ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴)
1110, 2sseldi 3796 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴))
12 0re 10330 . . . . . . . . . . 11 0 ∈ ℝ
13 simpl 475 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
14 elicc2 12487 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1512, 13, 14sylancr 582 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1611, 15mpbid 224 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
1716simp3d 1175 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥𝐴)
18 flge 12861 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
197, 18syldan 586 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
2017, 19mpbid 224 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴))
21 eluz2 11936 . . . . . . 7 ((⌊‘𝐴) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴)))
227, 9, 20, 21syl3anbrc 1444 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ𝑥))
23 elfzuzb 12590 . . . . . 6 (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ‘2) ∧ (⌊‘𝐴) ∈ (ℤ𝑥)))
245, 22, 23sylanbrc 579 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴)))
2524, 3elind 3996 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))
2625ex 402 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)))
2726ssrdv 3804 . 2 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ))
28 2z 11699 . . . . 5 2 ∈ ℤ
29 fzval2 12583 . . . . 5 ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
3028, 8, 29sylancr 582 . . . 4 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
31 inss1 4028 . . . . 5 ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴))
3212a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ∈ ℝ)
33 id 22 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
34 0le2 11422 . . . . . . 7 0 ≤ 2
3534a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ 2)
36 flle 12855 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
37 iccss 12490 . . . . . 6 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3832, 33, 35, 36, 37syl22anc 868 . . . . 5 (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3931, 38syl5ss 3809 . . . 4 (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴))
4030, 39eqsstrd 3835 . . 3 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴))
4140ssrind 4035 . 2 (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
4227, 41eqssd 3815 1 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  cin 3768  wss 3769   class class class wbr 4843  cfv 6101  (class class class)co 6878  cr 10223  0cc0 10224  cle 10364  2c2 11368  cz 11666  cuz 11930  [,]cicc 12427  ...cfz 12580  cfl 12846  cprime 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-icc 12431  df-fz 12581  df-fl 12848  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-dvds 15320  df-prm 15720
This theorem is referenced by:  ppisval2  25183  ppifi  25184  ppival2  25206  chtfl  25227  chtprm  25231  chtnprm  25232  ppifl  25238  cht1  25243  chtlepsi  25283  chpval2  25295  chpub  25297  chtvalz  31227
  Copyright terms: Public domain W3C validator