MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylplem2 Structured version   Visualization version   GIF version

Theorem taylplem2 25428
Description: Lemma for taylpfval 25429 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
Assertion
Ref Expression
taylplem2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem taylplem2
StepHypRef Expression
1 0z 12260 . . . . . 6 0 ∈ ℤ
2 taylpfval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
32nn0zd 12353 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4 fzval2 13171 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
51, 3, 4sylancr 586 . . . . 5 (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
65eleq2d 2824 . . . 4 (𝜑 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)))
76adantr 480 . . 3 ((𝜑𝑋 ∈ ℂ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)))
87biimpa 476 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
9 taylpfval.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
10 taylpfval.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
11 taylpfval.a . . 3 (𝜑𝐴𝑆)
122orcd 869 . . 3 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
13 taylpfval.b . . . 4 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
149, 10, 11, 2, 13taylplem1 25427 . . 3 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
159, 10, 11, 12, 14taylfvallem1 25421 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
168, 15syldan 590 1 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883  {cpr 4560  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  cmin 11135   / cdiv 11562  0cn0 12163  cz 12249  [,]cicc 13011  ...cfz 13168  cexp 13710  !cfa 13915   D𝑛 cdvn 24933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-fac 13916  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-limc 24935  df-dv 24936  df-dvn 24937
This theorem is referenced by:  taylpf  25430  dvtaylp  25434
  Copyright terms: Public domain W3C validator