MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylplem2 Structured version   Visualization version   GIF version

Theorem taylplem2 25594
Description: Lemma for taylpfval 25595 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
Assertion
Ref Expression
taylplem2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem taylplem2
StepHypRef Expression
1 0z 12400 . . . . . 6 0 ∈ ℤ
2 taylpfval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
32nn0zd 12494 . . . . . 6 (𝜑𝑁 ∈ ℤ)
4 fzval2 13312 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
51, 3, 4sylancr 587 . . . . 5 (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
65eleq2d 2823 . . . 4 (𝜑 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)))
76adantr 481 . . 3 ((𝜑𝑋 ∈ ℂ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)))
87biimpa 477 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
9 taylpfval.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
10 taylpfval.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
11 taylpfval.a . . 3 (𝜑𝐴𝑆)
122orcd 870 . . 3 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
13 taylpfval.b . . . 4 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
149, 10, 11, 2, 13taylplem1 25593 . . 3 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
159, 10, 11, 12, 14taylfvallem1 25587 . 2 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
168, 15syldan 591 1 (((𝜑𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  cin 3895  wss 3896  {cpr 4571  dom cdm 5605  wf 6459  cfv 6463  (class class class)co 7313  cc 10939  cr 10940  0cc0 10941   · cmul 10946  +∞cpnf 11076  cmin 11275   / cdiv 11702  0cn0 12303  cz 12389  [,]cicc 13152  ...cfz 13309  cexp 13852  !cfa 14057   D𝑛 cdvn 25099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-map 8663  df-pm 8664  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fi 9238  df-sup 9269  df-inf 9270  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-uz 12653  df-q 12759  df-rp 12801  df-xneg 12918  df-xadd 12919  df-xmul 12920  df-icc 13156  df-fz 13310  df-seq 13792  df-exp 13853  df-fac 14058  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-struct 16915  df-slot 16950  df-ndx 16962  df-base 16980  df-plusg 17042  df-mulr 17043  df-starv 17044  df-tset 17048  df-ple 17049  df-ds 17051  df-unif 17052  df-rest 17200  df-topn 17201  df-topgen 17221  df-psmet 20660  df-xmet 20661  df-met 20662  df-bl 20663  df-mopn 20664  df-fbas 20665  df-fg 20666  df-cnfld 20669  df-top 22114  df-topon 22131  df-topsp 22153  df-bases 22167  df-cld 22241  df-ntr 22242  df-cls 22243  df-nei 22320  df-lp 22358  df-perf 22359  df-cnp 22450  df-haus 22537  df-fil 23068  df-fm 23160  df-flim 23161  df-flf 23162  df-xms 23544  df-ms 23545  df-limc 25101  df-dv 25102  df-dvn 25103
This theorem is referenced by:  taylpf  25596  dvtaylp  25600
  Copyright terms: Public domain W3C validator