MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumabs Structured version   Visualization version   GIF version

Theorem dvfsumabs 24303
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumabs.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumabs.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
dvfsumabs.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumabs.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumabs.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumabs.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumabs.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
dvfsumabs.y ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
dvfsumabs.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
Assertion
Ref Expression
dvfsumabs (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem dvfsumabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13192 . . . . . 6 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumabs.x . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
4 dvfsumabs.m . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12098 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12103 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
9 fzval2 12745 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4125 . . . . . . . . . . 11 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11syl6eqss 3942 . . . . . . . . . 10 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3889 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumabs.a . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
15 cncff 23184 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1614, 15syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
17 eqid 2795 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 6737 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1916, 18sylibr 235 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ)
20 nfcsb1v 3833 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐴
2120nfel1 2963 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
22 csbeq1a 3824 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2867 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2421, 23rspc 3553 . . . . . . . . . 10 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ → 𝑦 / 𝑥𝐴 ∈ ℂ))
2519, 24mpan9 507 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2613, 25syldan 591 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2726ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ)
28 fzofzp1 12984 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3814 . . . . . . . . 9 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2867 . . . . . . . 8 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℂ))
3130rspccva 3558 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
3227, 28, 31syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
33 elfzofz 12903 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3814 . . . . . . . . 9 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2867 . . . . . . . 8 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ 𝑘 / 𝑥𝐴 ∈ ℂ))
3635rspccva 3558 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3727, 33, 36syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3832, 37subcld 10845 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℂ)
392, 3, 38fsumsub 14976 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
40 vex 3440 . . . . . . . 8 𝑦 ∈ V
4140a1i 11 . . . . . . 7 (𝑦 = 𝑀𝑦 ∈ V)
42 eqeq2 2806 . . . . . . . . 9 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
4342biimpa 477 . . . . . . . 8 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
44 dvfsumabs.c . . . . . . . 8 (𝑥 = 𝑀𝐴 = 𝐶)
4543, 44syl 17 . . . . . . 7 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
4641, 45csbied 3844 . . . . . 6 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
4740a1i 11 . . . . . . 7 (𝑦 = 𝑁𝑦 ∈ V)
48 eqeq2 2806 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
4948biimpa 477 . . . . . . . 8 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
50 dvfsumabs.d . . . . . . . 8 (𝑥 = 𝑁𝐴 = 𝐷)
5149, 50syl 17 . . . . . . 7 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
5247, 51csbied 3844 . . . . . 6 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
5334, 29, 46, 52, 4, 26telfsumo2 14991 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
5453oveq2d 7032 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5539, 54eqtrd 2831 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5655fveq2d 6542 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))))
573, 38subcld 10845 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
582, 57fsumcl 14923 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
5958abscld 14630 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
6057abscld 14630 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
612, 60fsumrecl 14924 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
62 dvfsumabs.y . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
632, 62fsumrecl 14924 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑌 ∈ ℝ)
642, 57fsumabs 14989 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))))
65 elfzoelz 12888 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6665adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
6766zred 11936 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
6867rexrd 10537 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
69 peano2re 10660 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
7067, 69syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
7170rexrd 10537 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
7267lep1d 11419 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
73 ubicc2 12703 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
7468, 71, 72, 73syl3anc 1364 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
75 lbicc2 12702 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
7668, 71, 72, 75syl3anc 1364 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
776zred 11936 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
7877adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
798zred 11936 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
8079adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
81 elfzole1 12896 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
8281adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
8328adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
84 elfzle2 12761 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
8583, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
86 iccss 12654 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8778, 80, 82, 85, 86syl22anc 835 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8887resmptd 5789 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
89 eqid 2795 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089subcn 23157 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
9190a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
92 iccssre 12668 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
9377, 79, 92syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
9493adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
95 ax-resscn 10440 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
9694, 95syl6ss 3901 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
97 ssid 3910 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
9897a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℂ ⊆ ℂ)
99 cncfmptc 23202 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
1003, 96, 98, 99syl3anc 1364 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
101 cncfmptid 23203 . . . . . . . . . . . . 13 (((𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10296, 97, 101sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
103100, 102mulcncf 23730 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝑋 · 𝑥)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10414adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10589, 91, 103, 104cncfmpt2f 23205 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
106 rescncf 23188 . . . . . . . . . 10 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ)))
10787, 105, 106sylc 65 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10888, 107eqeltrrd 2884 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10995a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
11087, 94sstrd 3899 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
11187sselda 3889 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → 𝑥 ∈ (𝑀[,]𝑁))
1123adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑋 ∈ ℂ)
11396sselda 3889 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ ℂ)
114112, 113mulcld 10507 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
11519r19.21bi 3175 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
116115adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
117114, 116subcld 10845 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
118111, 117syldan 591 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
11989tgioo2 23094 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120 iccntr 23112 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
12167, 70, 120syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
122109, 110, 118, 119, 89, 121dvmptntr 24251 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))))
123 reelprrecn 10475 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
125 ioossicc 12672 . . . . . . . . . . . . . 14 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
126125sseli 3885 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
127126, 117sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
128 ovex 7048 . . . . . . . . . . . . 13 (𝑋𝐵) ∈ V
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋𝐵) ∈ V)
130126, 114sylan2 592 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
1313adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑋 ∈ ℂ)
132125, 96syl5ss 3900 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
133132sselda 3889 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑥 ∈ ℂ)
134 1cnd 10482 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 1 ∈ ℂ)
135109sselda 3889 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
136 1cnd 10482 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
137124dvmptid 24237 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
138125, 94syl5ss 3900 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℝ)
139 iooretop 23057 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑁) ∈ (topGen‘ran (,))
140139a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ∈ (topGen‘ran (,)))
141124, 135, 136, 137, 138, 119, 89, 140dvmptres 24243 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑥)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 1))
142124, 133, 134, 141, 3dvmptcmul 24244 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)))
1433mulid1d 10504 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
144143mpteq2dv 5056 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
145142, 144eqtrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
146126, 116sylan2 592 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
147 dvfsumabs.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
148147adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
149 dvfsumabs.b . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
150149adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
151124, 130, 131, 145, 146, 148, 150dvmptsub 24247 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋𝐵)))
15278rexrd 10537 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
153 iooss1 12623 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
154152, 82, 153syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
15580rexrd 10537 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
156 iooss2 12624 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
157155, 85, 156syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
158154, 157sstrd 3899 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
159 iooretop 23057 . . . . . . . . . . . . 13 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
160159a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
161124, 127, 129, 151, 158, 119, 89, 160dvmptres 24243 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
162122, 161eqtrd 2831 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
163162dmeqd 5660 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
164 eqid 2795 . . . . . . . . . 10 (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))
165128, 164dmmpti 6360 . . . . . . . . 9 dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑘(,)(𝑘 + 1))
166163, 165syl6eq 2847 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑘(,)(𝑘 + 1)))
167162adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
168167fveq1d 6540 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥))
169 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑥 ∈ (𝑘(,)(𝑘 + 1)))
170164fvmpt2 6645 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ∧ (𝑋𝐵) ∈ V) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
171169, 128, 170sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
172168, 171eqtrd 2831 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = (𝑋𝐵))
173172fveq2d 6542 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘(𝑋𝐵)))
174 dvfsumabs.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
175174anassrs 468 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
176173, 175eqbrtrd 4984 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
177176ralrimiva 3149 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
178 nfcv 2949 . . . . . . . . . . . 12 𝑥abs
179 nfcv 2949 . . . . . . . . . . . . . 14 𝑥
180 nfcv 2949 . . . . . . . . . . . . . 14 𝑥 D
181 nfmpt1 5058 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
182179, 180, 181nfov 7046 . . . . . . . . . . . . 13 𝑥(ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
183 nfcv 2949 . . . . . . . . . . . . 13 𝑥𝑦
184182, 183nffv 6548 . . . . . . . . . . . 12 𝑥((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)
185178, 184nffv 6548 . . . . . . . . . . 11 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦))
186 nfcv 2949 . . . . . . . . . . 11 𝑥
187 nfcv 2949 . . . . . . . . . . 11 𝑥𝑌
188185, 186, 187nfbr 5009 . . . . . . . . . 10 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌
189 2fveq3 6543 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)))
190189breq1d 4972 . . . . . . . . . 10 (𝑥 = 𝑦 → ((abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
191188, 190rspc 3553 . . . . . . . . 9 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
192177, 191mpan9 507 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌)
19367, 70, 108, 166, 62, 192dvlip 24273 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ ((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1)))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
194193ex 413 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘)))))
19574, 76, 194mp2and 695 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
196 ovex 7048 . . . . . . . . 9 ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V
197 nfcv 2949 . . . . . . . . . 10 𝑥(𝑘 + 1)
198 nfcv 2949 . . . . . . . . . . 11 𝑥(𝑋 · (𝑘 + 1))
199 nfcv 2949 . . . . . . . . . . 11 𝑥
200 nfcsb1v 3833 . . . . . . . . . . 11 𝑥(𝑘 + 1) / 𝑥𝐴
201198, 199, 200nfov 7046 . . . . . . . . . 10 𝑥((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴)
202 oveq2 7024 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝑋 · 𝑥) = (𝑋 · (𝑘 + 1)))
203 csbeq1a 3824 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑥𝐴)
204202, 203oveq12d 7034 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
205 eqid 2795 . . . . . . . . . 10 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
206197, 201, 204, 205fvmptf 6655 . . . . . . . . 9 (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20774, 196, 206sylancl 586 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20867recnd 10515 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
2093, 208mulcld 10507 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 𝑘) ∈ ℂ)
210209, 37subcld 10845 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ)
211 nfcv 2949 . . . . . . . . . 10 𝑥𝑘
212 nfcv 2949 . . . . . . . . . . 11 𝑥(𝑋 · 𝑘)
213 nfcsb1v 3833 . . . . . . . . . . 11 𝑥𝑘 / 𝑥𝐴
214212, 199, 213nfov 7046 . . . . . . . . . 10 𝑥((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)
215 oveq2 7024 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝑋 · 𝑥) = (𝑋 · 𝑘))
216 csbeq1a 3824 . . . . . . . . . . 11 (𝑥 = 𝑘𝐴 = 𝑘 / 𝑥𝐴)
217215, 216oveq12d 7034 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
218211, 214, 217, 205fvmptf 6655 . . . . . . . . 9 ((𝑘 ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
21976, 210, 218syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
220207, 219oveq12d 7034 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
221 peano2cn 10659 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
222208, 221syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
2233, 222mulcld 10507 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · (𝑘 + 1)) ∈ ℂ)
224223, 209, 32, 37sub4d 10894 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
225 1cnd 10482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
226208, 225pncan2d 10847 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
227226oveq2d 7032 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
2283, 222, 208subdid 10944 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
229227, 228, 1433eqtr3d 2839 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
230229oveq1d 7031 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
231220, 224, 2303eqtr2rd 2838 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)))
232231fveq2d 6542 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))))
233226fveq2d 6542 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = (abs‘1))
234 abs1 14491 . . . . . . . 8 (abs‘1) = 1
235233, 234syl6eq 2847 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = 1)
236235oveq2d 7032 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · (abs‘((𝑘 + 1) − 𝑘))) = (𝑌 · 1))
23762recnd 10515 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℂ)
238237mulid1d 10504 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · 1) = 𝑌)
239236, 238eqtr2d 2832 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 = (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
240195, 232, 2393brtr4d 4994 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ 𝑌)
2412, 60, 62, 240fsumle 14987 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24259, 61, 63, 64, 241letrd 10644 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24356, 242eqbrtrrd 4986 1 (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  csb 3811  cin 3858  wss 3859  {cpr 4474   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444  cres 5445  wf 6221  cfv 6225  (class class class)co 7016  Fincfn 8357  cc 10381  cr 10382  1c1 10384   + caddc 10386   · cmul 10388  *cxr 10520  cle 10522  cmin 10717  cz 11829  cuz 12093  (,)cioo 12588  [,]cicc 12591  ...cfz 12742  ..^cfzo 12883  abscabs 14427  Σcsu 14876  TopOpenctopn 16524  topGenctg 16540  fldccnfld 20227  intcnt 21309   Cn ccn 21516   ×t ctx 21852  cnccncf 23167   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator