MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumabs Structured version   Visualization version   GIF version

Theorem dvfsumabs 25776
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumabs.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumabs.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
dvfsumabs.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumabs.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumabs.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumabs.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumabs.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
dvfsumabs.y ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
dvfsumabs.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
Assertion
Ref Expression
dvfsumabs (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem dvfsumabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13944 . . . . . 6 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumabs.x . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
4 dvfsumabs.m . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12832 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12837 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
9 fzval2 13492 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4228 . . . . . . . . . . 11 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11eqsstrdi 4036 . . . . . . . . . 10 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3982 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumabs.a . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
15 cncff 24634 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1614, 15syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
17 eqid 2731 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 7111 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1916, 18sylibr 233 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ)
20 nfcsb1v 3918 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐴
2120nfel1 2918 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
22 csbeq1a 3907 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2817 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2421, 23rspc 3600 . . . . . . . . . 10 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ → 𝑦 / 𝑥𝐴 ∈ ℂ))
2519, 24mpan9 506 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2613, 25syldan 590 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2726ralrimiva 3145 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ)
28 fzofzp1 13734 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3896 . . . . . . . . 9 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2817 . . . . . . . 8 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℂ))
3130rspccva 3611 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
3227, 28, 31syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
33 elfzofz 13653 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3896 . . . . . . . . 9 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2817 . . . . . . . 8 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ 𝑘 / 𝑥𝐴 ∈ ℂ))
3635rspccva 3611 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3727, 33, 36syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3832, 37subcld 11576 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℂ)
392, 3, 38fsumsub 15739 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
40 vex 3477 . . . . . . . 8 𝑦 ∈ V
4140a1i 11 . . . . . . 7 (𝑦 = 𝑀𝑦 ∈ V)
42 eqeq2 2743 . . . . . . . . 9 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
4342biimpa 476 . . . . . . . 8 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
44 dvfsumabs.c . . . . . . . 8 (𝑥 = 𝑀𝐴 = 𝐶)
4543, 44syl 17 . . . . . . 7 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
4641, 45csbied 3931 . . . . . 6 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
4740a1i 11 . . . . . . 7 (𝑦 = 𝑁𝑦 ∈ V)
48 eqeq2 2743 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
4948biimpa 476 . . . . . . . 8 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
50 dvfsumabs.d . . . . . . . 8 (𝑥 = 𝑁𝐴 = 𝐷)
5149, 50syl 17 . . . . . . 7 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
5247, 51csbied 3931 . . . . . 6 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
5334, 29, 46, 52, 4, 26telfsumo2 15754 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
5453oveq2d 7428 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5539, 54eqtrd 2771 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5655fveq2d 6895 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))))
573, 38subcld 11576 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
582, 57fsumcl 15684 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
5958abscld 15388 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
6057abscld 15388 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
612, 60fsumrecl 15685 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
62 dvfsumabs.y . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
632, 62fsumrecl 15685 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑌 ∈ ℝ)
642, 57fsumabs 15752 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))))
65 elfzoelz 13637 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6665adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
6766zred 12671 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
6867rexrd 11269 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
69 peano2re 11392 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
7067, 69syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
7170rexrd 11269 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
7267lep1d 12150 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
73 ubicc2 13447 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
7468, 71, 72, 73syl3anc 1370 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
75 lbicc2 13446 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
7668, 71, 72, 75syl3anc 1370 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
776zred 12671 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
7877adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
798zred 12671 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
8079adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
81 elfzole1 13645 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
8281adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
8328adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
84 elfzle2 13510 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
8583, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
86 iccss 13397 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8778, 80, 82, 85, 86syl22anc 836 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8887resmptd 6040 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
89 eqid 2731 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089subcn 24603 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
9190a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
92 iccssre 13411 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
9377, 79, 92syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
9493adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
95 ax-resscn 11171 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
9694, 95sstrdi 3994 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
97 ssid 4004 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
9897a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℂ ⊆ ℂ)
99 cncfmptc 24653 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
1003, 96, 98, 99syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
101 cncfmptid 24654 . . . . . . . . . . . . 13 (((𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10296, 97, 101sylancl 585 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
103100, 102mulcncf 25195 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝑋 · 𝑥)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10414adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10589, 91, 103, 104cncfmpt2f 24656 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
106 rescncf 24638 . . . . . . . . . 10 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ)))
10787, 105, 106sylc 65 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10888, 107eqeltrrd 2833 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10995a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
11087, 94sstrd 3992 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
11187sselda 3982 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → 𝑥 ∈ (𝑀[,]𝑁))
1123adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑋 ∈ ℂ)
11396sselda 3982 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ ℂ)
114112, 113mulcld 11239 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
11519r19.21bi 3247 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
116115adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
117114, 116subcld 11576 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
118111, 117syldan 590 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
11989tgioo2 24540 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120 iccntr 24558 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
12167, 70, 120syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
122109, 110, 118, 119, 89, 121dvmptntr 25724 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))))
123 reelprrecn 11206 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
125 ioossicc 13415 . . . . . . . . . . . . . 14 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
126125sseli 3978 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
127126, 117sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
128 ovex 7445 . . . . . . . . . . . . 13 (𝑋𝐵) ∈ V
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋𝐵) ∈ V)
130126, 114sylan2 592 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
1313adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑋 ∈ ℂ)
132125, 96sstrid 3993 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
133132sselda 3982 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑥 ∈ ℂ)
134 1cnd 11214 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 1 ∈ ℂ)
135109sselda 3982 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
136 1cnd 11214 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
137124dvmptid 25710 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
138125, 94sstrid 3993 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℝ)
139 iooretop 24503 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑁) ∈ (topGen‘ran (,))
140139a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ∈ (topGen‘ran (,)))
141124, 135, 136, 137, 138, 119, 89, 140dvmptres 25716 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑥)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 1))
142124, 133, 134, 141, 3dvmptcmul 25717 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)))
1433mulridd 11236 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
144143mpteq2dv 5250 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
145142, 144eqtrd 2771 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
146126, 116sylan2 592 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
147 dvfsumabs.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
148147adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
149 dvfsumabs.b . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
150149adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
151124, 130, 131, 145, 146, 148, 150dvmptsub 25720 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋𝐵)))
15278rexrd 11269 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
153 iooss1 13364 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
154152, 82, 153syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
15580rexrd 11269 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
156 iooss2 13365 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
157155, 85, 156syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
158154, 157sstrd 3992 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
159 iooretop 24503 . . . . . . . . . . . . 13 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
160159a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
161124, 127, 129, 151, 158, 119, 89, 160dvmptres 25716 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
162122, 161eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
163162dmeqd 5905 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
164 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))
165128, 164dmmpti 6694 . . . . . . . . 9 dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑘(,)(𝑘 + 1))
166163, 165eqtrdi 2787 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑘(,)(𝑘 + 1)))
167162adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
168167fveq1d 6893 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥))
169 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑥 ∈ (𝑘(,)(𝑘 + 1)))
170164fvmpt2 7009 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ∧ (𝑋𝐵) ∈ V) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
171169, 128, 170sylancl 585 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
172168, 171eqtrd 2771 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = (𝑋𝐵))
173172fveq2d 6895 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘(𝑋𝐵)))
174 dvfsumabs.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
175174anassrs 467 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
176173, 175eqbrtrd 5170 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
177176ralrimiva 3145 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
178 nfcv 2902 . . . . . . . . . . . 12 𝑥abs
179 nfcv 2902 . . . . . . . . . . . . . 14 𝑥
180 nfcv 2902 . . . . . . . . . . . . . 14 𝑥 D
181 nfmpt1 5256 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
182179, 180, 181nfov 7442 . . . . . . . . . . . . 13 𝑥(ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
183 nfcv 2902 . . . . . . . . . . . . 13 𝑥𝑦
184182, 183nffv 6901 . . . . . . . . . . . 12 𝑥((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)
185178, 184nffv 6901 . . . . . . . . . . 11 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦))
186 nfcv 2902 . . . . . . . . . . 11 𝑥
187 nfcv 2902 . . . . . . . . . . 11 𝑥𝑌
188185, 186, 187nfbr 5195 . . . . . . . . . 10 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌
189 2fveq3 6896 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)))
190189breq1d 5158 . . . . . . . . . 10 (𝑥 = 𝑦 → ((abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
191188, 190rspc 3600 . . . . . . . . 9 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
192177, 191mpan9 506 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌)
19367, 70, 108, 166, 62, 192dvlip 25746 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ ((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1)))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
194193ex 412 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘)))))
19574, 76, 194mp2and 696 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
196 ovex 7445 . . . . . . . . 9 ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V
197 nfcv 2902 . . . . . . . . . 10 𝑥(𝑘 + 1)
198 nfcv 2902 . . . . . . . . . . 11 𝑥(𝑋 · (𝑘 + 1))
199 nfcv 2902 . . . . . . . . . . 11 𝑥
200 nfcsb1v 3918 . . . . . . . . . . 11 𝑥(𝑘 + 1) / 𝑥𝐴
201198, 199, 200nfov 7442 . . . . . . . . . 10 𝑥((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴)
202 oveq2 7420 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝑋 · 𝑥) = (𝑋 · (𝑘 + 1)))
203 csbeq1a 3907 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑥𝐴)
204202, 203oveq12d 7430 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
205 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
206197, 201, 204, 205fvmptf 7019 . . . . . . . . 9 (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20774, 196, 206sylancl 585 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20867recnd 11247 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
2093, 208mulcld 11239 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 𝑘) ∈ ℂ)
210209, 37subcld 11576 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ)
211 nfcv 2902 . . . . . . . . . 10 𝑥𝑘
212 nfcv 2902 . . . . . . . . . . 11 𝑥(𝑋 · 𝑘)
213 nfcsb1v 3918 . . . . . . . . . . 11 𝑥𝑘 / 𝑥𝐴
214212, 199, 213nfov 7442 . . . . . . . . . 10 𝑥((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)
215 oveq2 7420 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝑋 · 𝑥) = (𝑋 · 𝑘))
216 csbeq1a 3907 . . . . . . . . . . 11 (𝑥 = 𝑘𝐴 = 𝑘 / 𝑥𝐴)
217215, 216oveq12d 7430 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
218211, 214, 217, 205fvmptf 7019 . . . . . . . . 9 ((𝑘 ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
21976, 210, 218syl2anc 583 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
220207, 219oveq12d 7430 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
221 peano2cn 11391 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
222208, 221syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
2233, 222mulcld 11239 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · (𝑘 + 1)) ∈ ℂ)
224223, 209, 32, 37sub4d 11625 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
225 1cnd 11214 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
226208, 225pncan2d 11578 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
227226oveq2d 7428 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
2283, 222, 208subdid 11675 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
229227, 228, 1433eqtr3d 2779 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
230229oveq1d 7427 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
231220, 224, 2303eqtr2rd 2778 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)))
232231fveq2d 6895 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))))
233226fveq2d 6895 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = (abs‘1))
234 abs1 15249 . . . . . . . 8 (abs‘1) = 1
235233, 234eqtrdi 2787 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = 1)
236235oveq2d 7428 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · (abs‘((𝑘 + 1) − 𝑘))) = (𝑌 · 1))
23762recnd 11247 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℂ)
238237mulridd 11236 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · 1) = 𝑌)
239236, 238eqtr2d 2772 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 = (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
240195, 232, 2393brtr4d 5180 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ 𝑌)
2412, 60, 62, 240fsumle 15750 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24259, 61, 63, 64, 241letrd 11376 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24356, 242eqbrtrrd 5172 1 (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  csb 3893  cin 3947  wss 3948  {cpr 4630   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cres 5678  wf 6539  cfv 6543  (class class class)co 7412  Fincfn 8943  cc 11112  cr 11113  1c1 11115   + caddc 11117   · cmul 11119  *cxr 11252  cle 11254  cmin 11449  cz 12563  cuz 12827  (,)cioo 13329  [,]cicc 13332  ...cfz 13489  ..^cfzo 13632  abscabs 15186  Σcsu 15637  TopOpenctopn 17372  topGenctg 17388  fldccnfld 21145  intcnt 22742   Cn ccn 22949   ×t ctx 23285  cnccncf 24617   D cdv 25613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-cmp 23112  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-limc 25616  df-dv 25617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator