MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumabs Structured version   Visualization version   GIF version

Theorem dvfsumabs 24547
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumabs.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumabs.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
dvfsumabs.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumabs.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumabs.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumabs.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumabs.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
dvfsumabs.y ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
dvfsumabs.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
Assertion
Ref Expression
dvfsumabs (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem dvfsumabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13330 . . . . . 6 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumabs.x . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
4 dvfsumabs.m . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12236 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12241 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
9 fzval2 12883 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4202 . . . . . . . . . . 11 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11eqsstrdi 4018 . . . . . . . . . 10 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3964 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumabs.a . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
15 cncff 23428 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1614, 15syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
17 eqid 2818 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 6866 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1916, 18sylibr 235 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ)
20 nfcsb1v 3904 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐴
2120nfel1 2991 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
22 csbeq1a 3894 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2894 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2421, 23rspc 3608 . . . . . . . . . 10 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ → 𝑦 / 𝑥𝐴 ∈ ℂ))
2519, 24mpan9 507 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2613, 25syldan 591 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2726ralrimiva 3179 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ)
28 fzofzp1 13122 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3883 . . . . . . . . 9 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2894 . . . . . . . 8 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℂ))
3130rspccva 3619 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
3227, 28, 31syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
33 elfzofz 13041 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3883 . . . . . . . . 9 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2894 . . . . . . . 8 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ 𝑘 / 𝑥𝐴 ∈ ℂ))
3635rspccva 3619 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3727, 33, 36syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3832, 37subcld 10985 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℂ)
392, 3, 38fsumsub 15131 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
40 vex 3495 . . . . . . . 8 𝑦 ∈ V
4140a1i 11 . . . . . . 7 (𝑦 = 𝑀𝑦 ∈ V)
42 eqeq2 2830 . . . . . . . . 9 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
4342biimpa 477 . . . . . . . 8 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
44 dvfsumabs.c . . . . . . . 8 (𝑥 = 𝑀𝐴 = 𝐶)
4543, 44syl 17 . . . . . . 7 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
4641, 45csbied 3916 . . . . . 6 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
4740a1i 11 . . . . . . 7 (𝑦 = 𝑁𝑦 ∈ V)
48 eqeq2 2830 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
4948biimpa 477 . . . . . . . 8 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
50 dvfsumabs.d . . . . . . . 8 (𝑥 = 𝑁𝐴 = 𝐷)
5149, 50syl 17 . . . . . . 7 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
5247, 51csbied 3916 . . . . . 6 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
5334, 29, 46, 52, 4, 26telfsumo2 15146 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
5453oveq2d 7161 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5539, 54eqtrd 2853 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5655fveq2d 6667 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))))
573, 38subcld 10985 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
582, 57fsumcl 15078 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
5958abscld 14784 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
6057abscld 14784 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
612, 60fsumrecl 15079 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
62 dvfsumabs.y . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
632, 62fsumrecl 15079 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑌 ∈ ℝ)
642, 57fsumabs 15144 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))))
65 elfzoelz 13026 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6665adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
6766zred 12075 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
6867rexrd 10679 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
69 peano2re 10801 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
7067, 69syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
7170rexrd 10679 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
7267lep1d 11559 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
73 ubicc2 12841 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
7468, 71, 72, 73syl3anc 1363 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
75 lbicc2 12840 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
7668, 71, 72, 75syl3anc 1363 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
776zred 12075 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
7877adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
798zred 12075 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
8079adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
81 elfzole1 13034 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
8281adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
8328adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
84 elfzle2 12899 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
8583, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
86 iccss 12792 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8778, 80, 82, 85, 86syl22anc 834 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8887resmptd 5901 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
89 eqid 2818 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089subcn 23401 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
9190a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
92 iccssre 12806 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
9377, 79, 92syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
9493adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
95 ax-resscn 10582 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
9694, 95sstrdi 3976 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
97 ssid 3986 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
9897a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℂ ⊆ ℂ)
99 cncfmptc 23446 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
1003, 96, 98, 99syl3anc 1363 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
101 cncfmptid 23447 . . . . . . . . . . . . 13 (((𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10296, 97, 101sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
103100, 102mulcncf 23974 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝑋 · 𝑥)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10414adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10589, 91, 103, 104cncfmpt2f 23449 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
106 rescncf 23432 . . . . . . . . . 10 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ)))
10787, 105, 106sylc 65 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10888, 107eqeltrrd 2911 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10995a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
11087, 94sstrd 3974 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
11187sselda 3964 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → 𝑥 ∈ (𝑀[,]𝑁))
1123adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑋 ∈ ℂ)
11396sselda 3964 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ ℂ)
114112, 113mulcld 10649 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
11519r19.21bi 3205 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
116115adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
117114, 116subcld 10985 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
118111, 117syldan 591 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
11989tgioo2 23338 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120 iccntr 23356 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
12167, 70, 120syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
122109, 110, 118, 119, 89, 121dvmptntr 24495 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))))
123 reelprrecn 10617 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
125 ioossicc 12810 . . . . . . . . . . . . . 14 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
126125sseli 3960 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
127126, 117sylan2 592 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
128 ovex 7178 . . . . . . . . . . . . 13 (𝑋𝐵) ∈ V
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋𝐵) ∈ V)
130126, 114sylan2 592 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
1313adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑋 ∈ ℂ)
132125, 96sstrid 3975 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
133132sselda 3964 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑥 ∈ ℂ)
134 1cnd 10624 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 1 ∈ ℂ)
135109sselda 3964 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
136 1cnd 10624 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
137124dvmptid 24481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
138125, 94sstrid 3975 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℝ)
139 iooretop 23301 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑁) ∈ (topGen‘ran (,))
140139a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ∈ (topGen‘ran (,)))
141124, 135, 136, 137, 138, 119, 89, 140dvmptres 24487 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑥)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 1))
142124, 133, 134, 141, 3dvmptcmul 24488 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)))
1433mulid1d 10646 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
144143mpteq2dv 5153 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
145142, 144eqtrd 2853 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
146126, 116sylan2 592 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
147 dvfsumabs.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
148147adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
149 dvfsumabs.b . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
150149adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
151124, 130, 131, 145, 146, 148, 150dvmptsub 24491 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋𝐵)))
15278rexrd 10679 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
153 iooss1 12761 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
154152, 82, 153syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
15580rexrd 10679 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
156 iooss2 12762 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
157155, 85, 156syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
158154, 157sstrd 3974 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
159 iooretop 23301 . . . . . . . . . . . . 13 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
160159a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
161124, 127, 129, 151, 158, 119, 89, 160dvmptres 24487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
162122, 161eqtrd 2853 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
163162dmeqd 5767 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
164 eqid 2818 . . . . . . . . . 10 (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))
165128, 164dmmpti 6485 . . . . . . . . 9 dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑘(,)(𝑘 + 1))
166163, 165syl6eq 2869 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑘(,)(𝑘 + 1)))
167162adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
168167fveq1d 6665 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥))
169 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑥 ∈ (𝑘(,)(𝑘 + 1)))
170164fvmpt2 6771 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ∧ (𝑋𝐵) ∈ V) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
171169, 128, 170sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
172168, 171eqtrd 2853 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = (𝑋𝐵))
173172fveq2d 6667 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘(𝑋𝐵)))
174 dvfsumabs.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
175174anassrs 468 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
176173, 175eqbrtrd 5079 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
177176ralrimiva 3179 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
178 nfcv 2974 . . . . . . . . . . . 12 𝑥abs
179 nfcv 2974 . . . . . . . . . . . . . 14 𝑥
180 nfcv 2974 . . . . . . . . . . . . . 14 𝑥 D
181 nfmpt1 5155 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
182179, 180, 181nfov 7175 . . . . . . . . . . . . 13 𝑥(ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
183 nfcv 2974 . . . . . . . . . . . . 13 𝑥𝑦
184182, 183nffv 6673 . . . . . . . . . . . 12 𝑥((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)
185178, 184nffv 6673 . . . . . . . . . . 11 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦))
186 nfcv 2974 . . . . . . . . . . 11 𝑥
187 nfcv 2974 . . . . . . . . . . 11 𝑥𝑌
188185, 186, 187nfbr 5104 . . . . . . . . . 10 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌
189 2fveq3 6668 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)))
190189breq1d 5067 . . . . . . . . . 10 (𝑥 = 𝑦 → ((abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
191188, 190rspc 3608 . . . . . . . . 9 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
192177, 191mpan9 507 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌)
19367, 70, 108, 166, 62, 192dvlip 24517 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ ((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1)))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
194193ex 413 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘)))))
19574, 76, 194mp2and 695 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
196 ovex 7178 . . . . . . . . 9 ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V
197 nfcv 2974 . . . . . . . . . 10 𝑥(𝑘 + 1)
198 nfcv 2974 . . . . . . . . . . 11 𝑥(𝑋 · (𝑘 + 1))
199 nfcv 2974 . . . . . . . . . . 11 𝑥
200 nfcsb1v 3904 . . . . . . . . . . 11 𝑥(𝑘 + 1) / 𝑥𝐴
201198, 199, 200nfov 7175 . . . . . . . . . 10 𝑥((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴)
202 oveq2 7153 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝑋 · 𝑥) = (𝑋 · (𝑘 + 1)))
203 csbeq1a 3894 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑥𝐴)
204202, 203oveq12d 7163 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
205 eqid 2818 . . . . . . . . . 10 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
206197, 201, 204, 205fvmptf 6781 . . . . . . . . 9 (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20774, 196, 206sylancl 586 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20867recnd 10657 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
2093, 208mulcld 10649 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 𝑘) ∈ ℂ)
210209, 37subcld 10985 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ)
211 nfcv 2974 . . . . . . . . . 10 𝑥𝑘
212 nfcv 2974 . . . . . . . . . . 11 𝑥(𝑋 · 𝑘)
213 nfcsb1v 3904 . . . . . . . . . . 11 𝑥𝑘 / 𝑥𝐴
214212, 199, 213nfov 7175 . . . . . . . . . 10 𝑥((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)
215 oveq2 7153 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝑋 · 𝑥) = (𝑋 · 𝑘))
216 csbeq1a 3894 . . . . . . . . . . 11 (𝑥 = 𝑘𝐴 = 𝑘 / 𝑥𝐴)
217215, 216oveq12d 7163 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
218211, 214, 217, 205fvmptf 6781 . . . . . . . . 9 ((𝑘 ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
21976, 210, 218syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
220207, 219oveq12d 7163 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
221 peano2cn 10800 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
222208, 221syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
2233, 222mulcld 10649 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · (𝑘 + 1)) ∈ ℂ)
224223, 209, 32, 37sub4d 11034 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
225 1cnd 10624 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
226208, 225pncan2d 10987 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
227226oveq2d 7161 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
2283, 222, 208subdid 11084 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
229227, 228, 1433eqtr3d 2861 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
230229oveq1d 7160 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
231220, 224, 2303eqtr2rd 2860 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)))
232231fveq2d 6667 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))))
233226fveq2d 6667 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = (abs‘1))
234 abs1 14645 . . . . . . . 8 (abs‘1) = 1
235233, 234syl6eq 2869 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = 1)
236235oveq2d 7161 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · (abs‘((𝑘 + 1) − 𝑘))) = (𝑌 · 1))
23762recnd 10657 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℂ)
238237mulid1d 10646 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · 1) = 𝑌)
239236, 238eqtr2d 2854 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 = (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
240195, 232, 2393brtr4d 5089 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ 𝑌)
2412, 60, 62, 240fsumle 15142 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24259, 61, 63, 64, 241letrd 10785 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24356, 242eqbrtrrd 5081 1 (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  csb 3880  cin 3932  wss 3933  {cpr 4559   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  Fincfn 8497  cc 10523  cr 10524  1c1 10526   + caddc 10528   · cmul 10530  *cxr 10662  cle 10664  cmin 10858  cz 11969  cuz 12231  (,)cioo 12726  [,]cicc 12729  ...cfz 12880  ..^cfzo 13021  abscabs 14581  Σcsu 15030  TopOpenctopn 16683  topGenctg 16699  fldccnfld 20473  intcnt 21553   Cn ccn 21760   ×t ctx 22096  cnccncf 23411   D cdv 24388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator