Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumabs Structured version   Visualization version   GIF version

Theorem dvfsumabs 24640
 Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumabs.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumabs.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
dvfsumabs.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumabs.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumabs.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumabs.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumabs.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
dvfsumabs.y ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
dvfsumabs.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
Assertion
Ref Expression
dvfsumabs (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem dvfsumabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13344 . . . . . 6 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumabs.x . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
4 dvfsumabs.m . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12243 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12248 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
9 fzval2 12895 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4155 . . . . . . . . . . 11 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11eqsstrdi 3969 . . . . . . . . . 10 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3915 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumabs.a . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
15 cncff 23512 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1614, 15syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
17 eqid 2798 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 6856 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1916, 18sylibr 237 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ)
20 nfcsb1v 3852 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐴
2120nfel1 2971 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
22 csbeq1a 3842 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2874 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2421, 23rspc 3559 . . . . . . . . . 10 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ → 𝑦 / 𝑥𝐴 ∈ ℂ))
2519, 24mpan9 510 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2613, 25syldan 594 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2726ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ)
28 fzofzp1 13136 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3831 . . . . . . . . 9 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2874 . . . . . . . 8 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℂ))
3130rspccva 3570 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
3227, 28, 31syl2an 598 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
33 elfzofz 13055 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3831 . . . . . . . . 9 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2874 . . . . . . . 8 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ 𝑘 / 𝑥𝐴 ∈ ℂ))
3635rspccva 3570 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3727, 33, 36syl2an 598 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3832, 37subcld 10993 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℂ)
392, 3, 38fsumsub 15142 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
40 vex 3444 . . . . . . . 8 𝑦 ∈ V
4140a1i 11 . . . . . . 7 (𝑦 = 𝑀𝑦 ∈ V)
42 eqeq2 2810 . . . . . . . . 9 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
4342biimpa 480 . . . . . . . 8 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
44 dvfsumabs.c . . . . . . . 8 (𝑥 = 𝑀𝐴 = 𝐶)
4543, 44syl 17 . . . . . . 7 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
4641, 45csbied 3864 . . . . . 6 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
4740a1i 11 . . . . . . 7 (𝑦 = 𝑁𝑦 ∈ V)
48 eqeq2 2810 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
4948biimpa 480 . . . . . . . 8 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
50 dvfsumabs.d . . . . . . . 8 (𝑥 = 𝑁𝐴 = 𝐷)
5149, 50syl 17 . . . . . . 7 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
5247, 51csbied 3864 . . . . . 6 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
5334, 29, 46, 52, 4, 26telfsumo2 15157 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
5453oveq2d 7156 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5539, 54eqtrd 2833 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5655fveq2d 6654 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))))
573, 38subcld 10993 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
582, 57fsumcl 15089 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
5958abscld 14795 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
6057abscld 14795 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
612, 60fsumrecl 15090 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
62 dvfsumabs.y . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
632, 62fsumrecl 15090 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑌 ∈ ℝ)
642, 57fsumabs 15155 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))))
65 elfzoelz 13040 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6665adantl 485 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
6766zred 12082 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
6867rexrd 10687 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
69 peano2re 10809 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
7067, 69syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
7170rexrd 10687 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
7267lep1d 11567 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
73 ubicc2 12850 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
7468, 71, 72, 73syl3anc 1368 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
75 lbicc2 12849 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
7668, 71, 72, 75syl3anc 1368 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
776zred 12082 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
7877adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
798zred 12082 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
8079adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
81 elfzole1 13048 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
8281adantl 485 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
8328adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
84 elfzle2 12913 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
8583, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
86 iccss 12800 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8778, 80, 82, 85, 86syl22anc 837 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8887resmptd 5876 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
89 eqid 2798 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089subcn 23485 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
9190a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
92 iccssre 12814 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
9377, 79, 92syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
9493adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
95 ax-resscn 10590 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
9694, 95sstrdi 3927 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
97 ssid 3937 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
9897a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℂ ⊆ ℂ)
99 cncfmptc 23531 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
1003, 96, 98, 99syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
101 cncfmptid 23532 . . . . . . . . . . . . 13 (((𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10296, 97, 101sylancl 589 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
103100, 102mulcncf 24064 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝑋 · 𝑥)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10414adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10589, 91, 103, 104cncfmpt2f 23534 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
106 rescncf 23516 . . . . . . . . . 10 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ)))
10787, 105, 106sylc 65 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10888, 107eqeltrrd 2891 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10995a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
11087, 94sstrd 3925 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
11187sselda 3915 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → 𝑥 ∈ (𝑀[,]𝑁))
1123adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑋 ∈ ℂ)
11396sselda 3915 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ ℂ)
114112, 113mulcld 10657 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
11519r19.21bi 3173 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
116115adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
117114, 116subcld 10993 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
118111, 117syldan 594 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
11989tgioo2 23422 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120 iccntr 23440 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
12167, 70, 120syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
122109, 110, 118, 119, 89, 121dvmptntr 24588 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))))
123 reelprrecn 10625 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
125 ioossicc 12818 . . . . . . . . . . . . . 14 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
126125sseli 3911 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
127126, 117sylan2 595 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
128 ovex 7173 . . . . . . . . . . . . 13 (𝑋𝐵) ∈ V
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋𝐵) ∈ V)
130126, 114sylan2 595 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
1313adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑋 ∈ ℂ)
132125, 96sstrid 3926 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
133132sselda 3915 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑥 ∈ ℂ)
134 1cnd 10632 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 1 ∈ ℂ)
135109sselda 3915 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
136 1cnd 10632 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
137124dvmptid 24574 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
138125, 94sstrid 3926 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℝ)
139 iooretop 23385 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑁) ∈ (topGen‘ran (,))
140139a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ∈ (topGen‘ran (,)))
141124, 135, 136, 137, 138, 119, 89, 140dvmptres 24580 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑥)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 1))
142124, 133, 134, 141, 3dvmptcmul 24581 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)))
1433mulid1d 10654 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
144143mpteq2dv 5127 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
145142, 144eqtrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
146126, 116sylan2 595 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
147 dvfsumabs.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
148147adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
149 dvfsumabs.b . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
150149adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
151124, 130, 131, 145, 146, 148, 150dvmptsub 24584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋𝐵)))
15278rexrd 10687 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
153 iooss1 12768 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
154152, 82, 153syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
15580rexrd 10687 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
156 iooss2 12769 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
157155, 85, 156syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
158154, 157sstrd 3925 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
159 iooretop 23385 . . . . . . . . . . . . 13 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
160159a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
161124, 127, 129, 151, 158, 119, 89, 160dvmptres 24580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
162122, 161eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
163162dmeqd 5739 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
164 eqid 2798 . . . . . . . . . 10 (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))
165128, 164dmmpti 6467 . . . . . . . . 9 dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑘(,)(𝑘 + 1))
166163, 165eqtrdi 2849 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑘(,)(𝑘 + 1)))
167162adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
168167fveq1d 6652 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥))
169 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑥 ∈ (𝑘(,)(𝑘 + 1)))
170164fvmpt2 6761 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ∧ (𝑋𝐵) ∈ V) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
171169, 128, 170sylancl 589 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
172168, 171eqtrd 2833 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = (𝑋𝐵))
173172fveq2d 6654 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘(𝑋𝐵)))
174 dvfsumabs.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
175174anassrs 471 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
176173, 175eqbrtrd 5053 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
177176ralrimiva 3149 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
178 nfcv 2955 . . . . . . . . . . . 12 𝑥abs
179 nfcv 2955 . . . . . . . . . . . . . 14 𝑥
180 nfcv 2955 . . . . . . . . . . . . . 14 𝑥 D
181 nfmpt1 5129 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
182179, 180, 181nfov 7170 . . . . . . . . . . . . 13 𝑥(ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
183 nfcv 2955 . . . . . . . . . . . . 13 𝑥𝑦
184182, 183nffv 6660 . . . . . . . . . . . 12 𝑥((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)
185178, 184nffv 6660 . . . . . . . . . . 11 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦))
186 nfcv 2955 . . . . . . . . . . 11 𝑥
187 nfcv 2955 . . . . . . . . . . 11 𝑥𝑌
188185, 186, 187nfbr 5078 . . . . . . . . . 10 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌
189 2fveq3 6655 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)))
190189breq1d 5041 . . . . . . . . . 10 (𝑥 = 𝑦 → ((abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
191188, 190rspc 3559 . . . . . . . . 9 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
192177, 191mpan9 510 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌)
19367, 70, 108, 166, 62, 192dvlip 24610 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ ((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1)))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
194193ex 416 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘)))))
19574, 76, 194mp2and 698 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
196 ovex 7173 . . . . . . . . 9 ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V
197 nfcv 2955 . . . . . . . . . 10 𝑥(𝑘 + 1)
198 nfcv 2955 . . . . . . . . . . 11 𝑥(𝑋 · (𝑘 + 1))
199 nfcv 2955 . . . . . . . . . . 11 𝑥
200 nfcsb1v 3852 . . . . . . . . . . 11 𝑥(𝑘 + 1) / 𝑥𝐴
201198, 199, 200nfov 7170 . . . . . . . . . 10 𝑥((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴)
202 oveq2 7148 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝑋 · 𝑥) = (𝑋 · (𝑘 + 1)))
203 csbeq1a 3842 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑥𝐴)
204202, 203oveq12d 7158 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
205 eqid 2798 . . . . . . . . . 10 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
206197, 201, 204, 205fvmptf 6771 . . . . . . . . 9 (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20774, 196, 206sylancl 589 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20867recnd 10665 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
2093, 208mulcld 10657 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 𝑘) ∈ ℂ)
210209, 37subcld 10993 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ)
211 nfcv 2955 . . . . . . . . . 10 𝑥𝑘
212 nfcv 2955 . . . . . . . . . . 11 𝑥(𝑋 · 𝑘)
213 nfcsb1v 3852 . . . . . . . . . . 11 𝑥𝑘 / 𝑥𝐴
214212, 199, 213nfov 7170 . . . . . . . . . 10 𝑥((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)
215 oveq2 7148 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝑋 · 𝑥) = (𝑋 · 𝑘))
216 csbeq1a 3842 . . . . . . . . . . 11 (𝑥 = 𝑘𝐴 = 𝑘 / 𝑥𝐴)
217215, 216oveq12d 7158 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
218211, 214, 217, 205fvmptf 6771 . . . . . . . . 9 ((𝑘 ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
21976, 210, 218syl2anc 587 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
220207, 219oveq12d 7158 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
221 peano2cn 10808 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
222208, 221syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
2233, 222mulcld 10657 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · (𝑘 + 1)) ∈ ℂ)
224223, 209, 32, 37sub4d 11042 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
225 1cnd 10632 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
226208, 225pncan2d 10995 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
227226oveq2d 7156 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
2283, 222, 208subdid 11092 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
229227, 228, 1433eqtr3d 2841 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
230229oveq1d 7155 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
231220, 224, 2303eqtr2rd 2840 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)))
232231fveq2d 6654 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))))
233226fveq2d 6654 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = (abs‘1))
234 abs1 14656 . . . . . . . 8 (abs‘1) = 1
235233, 234eqtrdi 2849 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = 1)
236235oveq2d 7156 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · (abs‘((𝑘 + 1) − 𝑘))) = (𝑌 · 1))
23762recnd 10665 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℂ)
238237mulid1d 10654 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · 1) = 𝑌)
239236, 238eqtr2d 2834 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 = (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
240195, 232, 2393brtr4d 5063 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ 𝑌)
2412, 60, 62, 240fsumle 15153 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24259, 61, 63, 64, 241letrd 10793 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24356, 242eqbrtrrd 5055 1 (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3441  ⦋csb 3828   ∩ cin 3880   ⊆ wss 3881  {cpr 4527   class class class wbr 5031   ↦ cmpt 5111  dom cdm 5520  ran crn 5521   ↾ cres 5522  ⟶wf 6323  ‘cfv 6327  (class class class)co 7140  Fincfn 8499  ℂcc 10531  ℝcr 10532  1c1 10534   + caddc 10536   · cmul 10538  ℝ*cxr 10670   ≤ cle 10672   − cmin 10866  ℤcz 11976  ℤ≥cuz 12238  (,)cioo 12733  [,]cicc 12736  ...cfz 12892  ..^cfzo 13035  abscabs 14592  Σcsu 15041  TopOpenctopn 16694  topGenctg 16710  ℂfldccnfld 20099  intcnt 21636   Cn ccn 21843   ×t ctx 22179  –cn→ccncf 23495   D cdv 24480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-inf2 9095  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-pre-sup 10611  ax-addf 10612  ax-mulf 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7395  df-om 7568  df-1st 7678  df-2nd 7679  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8452  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-fi 8866  df-sup 8897  df-inf 8898  df-oi 8965  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-div 11294  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20091  df-xmet 20092  df-met 20093  df-bl 20094  df-mopn 20095  df-fbas 20096  df-fg 20097  df-cnfld 20100  df-top 21513  df-topon 21530  df-topsp 21552  df-bases 21565  df-cld 21638  df-ntr 21639  df-cls 21640  df-nei 21717  df-lp 21755  df-perf 21756  df-cn 21846  df-cnp 21847  df-haus 21934  df-cmp 22006  df-tx 22181  df-hmeo 22374  df-fil 22465  df-fm 22557  df-flim 22558  df-flf 22559  df-xms 22941  df-ms 22942  df-tms 22943  df-cncf 23497  df-limc 24483  df-dv 24484 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator