MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylplem1 Structured version   Visualization version   GIF version

Theorem taylplem1 26213
Description: Lemma for taylpfval 26215 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylpfval.f (𝜑𝐹:𝐴⟶ℂ)
taylpfval.a (𝜑𝐴𝑆)
taylpfval.n (𝜑𝑁 ∈ ℕ0)
taylpfval.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
Assertion
Ref Expression
taylplem1 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑆,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem taylplem1
StepHypRef Expression
1 0z 12576 . . . . 5 0 ∈ ℤ
2 taylpfval.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
32nn0zd 12591 . . . . 5 (𝜑𝑁 ∈ ℤ)
4 fzval2 13494 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
51, 3, 4sylancr 586 . . . 4 (𝜑 → (0...𝑁) = ((0[,]𝑁) ∩ ℤ))
65eleq2d 2818 . . 3 (𝜑 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)))
76biimpar 477 . 2 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0...𝑁))
8 taylpfval.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
9 cnex 11197 . . . . . . 7 ℂ ∈ V
109a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
11 taylpfval.f . . . . . 6 (𝜑𝐹:𝐴⟶ℂ)
12 taylpfval.a . . . . . 6 (𝜑𝐴𝑆)
13 elpm2r 8845 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
1410, 8, 11, 12, 13syl22anc 836 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
158, 14jca 511 . . . 4 (𝜑 → (𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
16 dvn2bss 25779 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
17163expa 1117 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
1815, 17sylan 579 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑘))
19 taylpfval.b . . . 4 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
2019adantr 480 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
2118, 20sseldd 3983 . 2 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
227, 21syldan 590 1 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947  wss 3948  {cpr 4630  dom cdm 5676  wf 6539  cfv 6543  (class class class)co 7412  pm cpm 8827  cc 11114  cr 11115  0cc0 11116  0cn0 12479  cz 12565  [,]cicc 13334  ...cfz 13491   D𝑛 cdvn 25712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-icc 13338  df-fz 13492  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-starv 17219  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-rest 17375  df-topn 17376  df-topgen 17396  df-psmet 21224  df-xmet 21225  df-met 21226  df-bl 21227  df-mopn 21228  df-fbas 21229  df-fg 21230  df-cnfld 21233  df-top 22715  df-topon 22732  df-topsp 22754  df-bases 22768  df-cld 22842  df-ntr 22843  df-cls 22844  df-nei 22921  df-lp 22959  df-perf 22960  df-cnp 23051  df-haus 23138  df-fil 23669  df-fm 23761  df-flim 23762  df-flf 23763  df-xms 24145  df-ms 24146  df-limc 25714  df-dv 25715  df-dvn 25716
This theorem is referenced by:  taylplem2  26214  taylpfval  26215  dvtaylp  26220  dvntaylp0  26222
  Copyright terms: Public domain W3C validator