MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylplem1 Structured version   Visualization version   GIF version

Theorem taylplem1 26315
Description: Lemma for taylpfval 26317 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
taylpfval.s (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})
taylpfval.f (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)
taylpfval.a (πœ‘ β†’ 𝐴 βŠ† 𝑆)
taylpfval.n (πœ‘ β†’ 𝑁 ∈ β„•0)
taylpfval.b (πœ‘ β†’ 𝐡 ∈ dom ((𝑆 D𝑛 𝐹)β€˜π‘))
Assertion
Ref Expression
taylplem1 ((πœ‘ ∧ π‘˜ ∈ ((0[,]𝑁) ∩ β„€)) β†’ 𝐡 ∈ dom ((𝑆 D𝑛 𝐹)β€˜π‘˜))
Distinct variable groups:   𝐡,π‘˜   π‘˜,𝐹   π‘˜,𝑁   πœ‘,π‘˜   𝑆,π‘˜
Allowed substitution hint:   𝐴(π‘˜)

Proof of Theorem taylplem1
StepHypRef Expression
1 0z 12599 . . . . 5 0 ∈ β„€
2 taylpfval.n . . . . . 6 (πœ‘ β†’ 𝑁 ∈ β„•0)
32nn0zd 12614 . . . . 5 (πœ‘ β†’ 𝑁 ∈ β„€)
4 fzval2 13519 . . . . 5 ((0 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (0...𝑁) = ((0[,]𝑁) ∩ β„€))
51, 3, 4sylancr 585 . . . 4 (πœ‘ β†’ (0...𝑁) = ((0[,]𝑁) ∩ β„€))
65eleq2d 2811 . . 3 (πœ‘ β†’ (π‘˜ ∈ (0...𝑁) ↔ π‘˜ ∈ ((0[,]𝑁) ∩ β„€)))
76biimpar 476 . 2 ((πœ‘ ∧ π‘˜ ∈ ((0[,]𝑁) ∩ β„€)) β†’ π‘˜ ∈ (0...𝑁))
8 taylpfval.s . . . . 5 (πœ‘ β†’ 𝑆 ∈ {ℝ, β„‚})
9 cnex 11219 . . . . . . 7 β„‚ ∈ V
109a1i 11 . . . . . 6 (πœ‘ β†’ β„‚ ∈ V)
11 taylpfval.f . . . . . 6 (πœ‘ β†’ 𝐹:π΄βŸΆβ„‚)
12 taylpfval.a . . . . . 6 (πœ‘ β†’ 𝐴 βŠ† 𝑆)
13 elpm2r 8862 . . . . . 6 (((β„‚ ∈ V ∧ 𝑆 ∈ {ℝ, β„‚}) ∧ (𝐹:π΄βŸΆβ„‚ ∧ 𝐴 βŠ† 𝑆)) β†’ 𝐹 ∈ (β„‚ ↑pm 𝑆))
1410, 8, 11, 12, 13syl22anc 837 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (β„‚ ↑pm 𝑆))
158, 14jca 510 . . . 4 (πœ‘ β†’ (𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆)))
16 dvn2bss 25878 . . . . 5 ((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆) ∧ π‘˜ ∈ (0...𝑁)) β†’ dom ((𝑆 D𝑛 𝐹)β€˜π‘) βŠ† dom ((𝑆 D𝑛 𝐹)β€˜π‘˜))
17163expa 1115 . . . 4 (((𝑆 ∈ {ℝ, β„‚} ∧ 𝐹 ∈ (β„‚ ↑pm 𝑆)) ∧ π‘˜ ∈ (0...𝑁)) β†’ dom ((𝑆 D𝑛 𝐹)β€˜π‘) βŠ† dom ((𝑆 D𝑛 𝐹)β€˜π‘˜))
1815, 17sylan 578 . . 3 ((πœ‘ ∧ π‘˜ ∈ (0...𝑁)) β†’ dom ((𝑆 D𝑛 𝐹)β€˜π‘) βŠ† dom ((𝑆 D𝑛 𝐹)β€˜π‘˜))
19 taylpfval.b . . . 4 (πœ‘ β†’ 𝐡 ∈ dom ((𝑆 D𝑛 𝐹)β€˜π‘))
2019adantr 479 . . 3 ((πœ‘ ∧ π‘˜ ∈ (0...𝑁)) β†’ 𝐡 ∈ dom ((𝑆 D𝑛 𝐹)β€˜π‘))
2118, 20sseldd 3973 . 2 ((πœ‘ ∧ π‘˜ ∈ (0...𝑁)) β†’ 𝐡 ∈ dom ((𝑆 D𝑛 𝐹)β€˜π‘˜))
227, 21syldan 589 1 ((πœ‘ ∧ π‘˜ ∈ ((0[,]𝑁) ∩ β„€)) β†’ 𝐡 ∈ dom ((𝑆 D𝑛 𝐹)β€˜π‘˜))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3463   ∩ cin 3938   βŠ† wss 3939  {cpr 4626  dom cdm 5672  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7416   ↑pm cpm 8844  β„‚cc 11136  β„cr 11137  0cc0 11138  β„•0cn0 12502  β„€cz 12588  [,]cicc 13359  ...cfz 13516   D𝑛 cdvn 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fi 9434  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-icc 13363  df-fz 13517  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-struct 17115  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-mulr 17246  df-starv 17247  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-rest 17403  df-topn 17404  df-topgen 17424  df-psmet 21275  df-xmet 21276  df-met 21277  df-bl 21278  df-mopn 21279  df-fbas 21280  df-fg 21281  df-cnfld 21284  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22867  df-cld 22941  df-ntr 22942  df-cls 22943  df-nei 23020  df-lp 23058  df-perf 23059  df-cnp 23150  df-haus 23237  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-xms 24244  df-ms 24245  df-limc 25813  df-dv 25814  df-dvn 25815
This theorem is referenced by:  taylplem2  26316  taylpfval  26317  dvtaylp  26323  dvntaylp0  26325
  Copyright terms: Public domain W3C validator