MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumleOLD Structured version   Visualization version   GIF version

Theorem dvfsumleOLD 25934
Description: Obsolete version of dvfsumle 25933 as of 17-Apr-2025. (Contributed by Mario Carneiro, 14-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvfsumleOLD.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumleOLD.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvfsumleOLD.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumleOLD.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumleOLD.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumleOLD.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumleOLD.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
dvfsumleOLD.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
Assertion
Ref Expression
dvfsumleOLD (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem dvfsumleOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13946 . . . 4 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . 3 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumleOLD.x . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
4 dvfsumleOLD.m . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12805 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12810 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
9 fzval2 13478 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4203 . . . . . . . . 9 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11eqsstrdi 3994 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3949 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumleOLD.a . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
15 cncff 24793 . . . . . . . . . 10 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
17 eqid 2730 . . . . . . . . . 10 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 7085 . . . . . . . . 9 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1916, 18sylibr 234 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
20 nfcsb1v 3889 . . . . . . . . . 10 𝑥𝑦 / 𝑥𝐴
2120nfel1 2909 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐴 ∈ ℝ
22 csbeq1a 3879 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2814 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝑦 / 𝑥𝐴 ∈ ℝ))
2421, 23rspc 3579 . . . . . . . 8 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑦 / 𝑥𝐴 ∈ ℝ))
2519, 24mpan9 506 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2613, 25syldan 591 . . . . . 6 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2726ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ)
28 fzofzp1 13732 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3868 . . . . . . 7 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2814 . . . . . 6 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℝ))
3130rspccva 3590 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
3227, 28, 31syl2an 596 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
33 elfzofz 13643 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3868 . . . . . . 7 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2814 . . . . . 6 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑘 / 𝑥𝐴 ∈ ℝ))
3635rspccva 3590 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3727, 33, 36syl2an 596 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3832, 37resubcld 11613 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℝ)
39 elfzoelz 13627 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
4039adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
4140zred 12645 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
4241recnd 11209 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
43 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
44 pncan2 11435 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 𝑘) = 1)
4542, 43, 44sylancl 586 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
4645oveq2d 7406 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
473recnd 11209 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
48 peano2re 11354 . . . . . . . 8 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4941, 48syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
5049recnd 11209 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
5147, 50, 42subdid 11641 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
5247mulridd 11198 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
5346, 51, 523eqtr3d 2773 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
54 eqid 2730 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5554mulcn 24763 . . . . . 6 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
566zred 12645 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
5756adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
588zred 12645 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
5958adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
60 elfzole1 13635 . . . . . . . . . . 11 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
6160adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
6228adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
63 elfzle2 13496 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
6462, 63syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
65 iccss 13382 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
6657, 59, 61, 64, 65syl22anc 838 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
67 iccssre 13397 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
6856, 58, 67syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
6968adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
7066, 69sstrd 3960 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
71 ax-resscn 11132 . . . . . . . 8 ℝ ⊆ ℂ
7270, 71sstrdi 3962 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℂ)
7371a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
74 cncfmptc 24812 . . . . . . 7 ((𝑋 ∈ ℝ ∧ (𝑘[,](𝑘 + 1)) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
753, 72, 73, 74syl3anc 1373 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
76 cncfmptid 24813 . . . . . . 7 (((𝑘[,](𝑘 + 1)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
7770, 71, 76sylancl 586 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
78 remulcl 11160 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) ∈ ℝ)
7954, 55, 75, 77, 71, 78cncfmpt2ss 24816 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
80 reelprrecn 11167 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8180a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
8257rexrd 11231 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
83 iooss1 13348 . . . . . . . . . . 11 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
8482, 61, 83syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
8559rexrd 11231 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
86 iooss2 13349 . . . . . . . . . . 11 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
8785, 64, 86syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
8884, 87sstrd 3960 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
89 ioossicc 13401 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
9069, 71sstrdi 3962 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
9189, 90sstrid 3961 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
9288, 91sstrd 3960 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℂ)
9392sselda 3949 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑦 ∈ ℂ)
94 1cnd 11176 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 1 ∈ ℂ)
9573sselda 3949 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
96 1cnd 11176 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
9781dvmptid 25868 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
98 ioossre 13375 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ⊆ ℝ
9998a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℝ)
10054tgioo2 24698 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
101 iooretop 24660 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
102101a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
10381, 95, 96, 97, 99, 100, 54, 102dvmptres 25874 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 1))
10481, 93, 94, 103, 47dvmptcmul 25875 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)))
10552mpteq2dv 5204 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
106104, 105eqtrd 2765 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
107 nfcv 2892 . . . . . . 7 𝑦𝐴
108107, 20, 22cbvmpt 5212 . . . . . 6 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)
10966resmptd 6014 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴))
11014adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
111 rescncf 24797 . . . . . . . 8 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)))
11266, 110, 111sylc 65 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
113109, 112eqeltrrd 2830 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
114108, 113eqeltrrid 2834 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
11516adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
116115, 18sylibr 234 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
11789sseli 3945 . . . . . . . 8 (𝑦 ∈ (𝑀(,)𝑁) → 𝑦 ∈ (𝑀[,]𝑁))
11824impcom 407 . . . . . . . 8 ((∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ∧ 𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
119116, 117, 118syl2an 596 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
120119recnd 11209 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
12189sseli 3945 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
12216fvmptelcdm 7088 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
123122adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
124121, 123sylan2 593 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
125124fmpttd 7090 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
126 ioossre 13375 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ ℝ
127 dvfre 25862 . . . . . . . . . 10 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
128125, 126, 127sylancl 586 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
129 dvfsumleOLD.b . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
130129adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
131130dmeqd 5872 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
132 dvfsumleOLD.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
133132adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
134133ralrimiva 3126 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉)
135 dmmptg 6218 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
136134, 135syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
137131, 136eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
138130, 137feq12d 6679 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
139128, 138mpbid 232 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
140 eqid 2730 . . . . . . . . 9 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)
141140fmpt 7085 . . . . . . . 8 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
142139, 141sylibr 234 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ)
143 nfcsb1v 3889 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐵
144143nfel1 2909 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵 ∈ ℝ
145 csbeq1a 3879 . . . . . . . . 9 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
146145eleq1d 2814 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵 ∈ ℝ ↔ 𝑦 / 𝑥𝐵 ∈ ℝ))
147144, 146rspc 3579 . . . . . . 7 (𝑦 ∈ (𝑀(,)𝑁) → (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ → 𝑦 / 𝑥𝐵 ∈ ℝ))
148142, 147mpan9 506 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐵 ∈ ℝ)
149107, 20, 22cbvmpt 5212 . . . . . . . 8 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)
150149oveq2i 7401 . . . . . . 7 (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴))
151 nfcv 2892 . . . . . . . 8 𝑦𝐵
152151, 143, 145cbvmpt 5212 . . . . . . 7 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵)
153130, 150, 1523eqtr3g 2788 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵))
15481, 120, 148, 153, 88, 100, 54, 102dvmptres 25874 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐵))
155 dvfsumleOLD.l . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
156155anassrs 467 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝐵)
157156ralrimiva 3126 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵)
158 nfcv 2892 . . . . . . . 8 𝑥𝑋
159 nfcv 2892 . . . . . . . 8 𝑥
160158, 159, 143nfbr 5157 . . . . . . 7 𝑥 𝑋𝑦 / 𝑥𝐵
161145breq2d 5122 . . . . . . 7 (𝑥 = 𝑦 → (𝑋𝐵𝑋𝑦 / 𝑥𝐵))
162160, 161rspc 3579 . . . . . 6 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵𝑋𝑦 / 𝑥𝐵))
163157, 162mpan9 506 . . . . 5 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝑦 / 𝑥𝐵)
16441rexrd 11231 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
16549rexrd 11231 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
16641lep1d 12121 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
167 lbicc2 13432 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
168164, 165, 166, 167syl3anc 1373 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
169 ubicc2 13433 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
170164, 165, 166, 169syl3anc 1373 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
171 oveq2 7398 . . . . 5 (𝑦 = 𝑘 → (𝑋 · 𝑦) = (𝑋 · 𝑘))
172 oveq2 7398 . . . . 5 (𝑦 = (𝑘 + 1) → (𝑋 · 𝑦) = (𝑋 · (𝑘 + 1)))
17341, 49, 79, 106, 114, 154, 163, 168, 170, 166, 171, 34, 172, 29dvle 25919 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
17453, 173eqbrtrrd 5134 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
1752, 3, 38, 174fsumle 15772 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
176 vex 3454 . . . . 5 𝑦 ∈ V
177176a1i 11 . . . 4 (𝑦 = 𝑀𝑦 ∈ V)
178 eqeq2 2742 . . . . . 6 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
179178biimpa 476 . . . . 5 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
180 dvfsumleOLD.c . . . . 5 (𝑥 = 𝑀𝐴 = 𝐶)
181179, 180syl 17 . . . 4 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
182177, 181csbied 3901 . . 3 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
183176a1i 11 . . . 4 (𝑦 = 𝑁𝑦 ∈ V)
184 eqeq2 2742 . . . . . 6 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
185184biimpa 476 . . . . 5 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
186 dvfsumleOLD.d . . . . 5 (𝑥 = 𝑁𝐴 = 𝐷)
187185, 186syl 17 . . . 4 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
188183, 187csbied 3901 . . 3 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
18926recnd 11209 . . 3 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
19034, 29, 182, 188, 4, 189telfsumo2 15776 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
191175, 190breqtrd 5136 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  csb 3865  cin 3916  wss 3917  {cpr 4594   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214  cle 11216  cmin 11412  cz 12536  cuz 12800  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  Σcsu 15659  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  cnccncf 24776   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator