![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gg-cnfldcj | Structured version Visualization version GIF version |
Description: The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21146. (Revised by GG, 31-Mar-2025.) |
Ref | Expression |
---|---|
gg-cnfldcj | β’ β = (*πββfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjf 15056 | . . 3 β’ β:ββΆβ | |
2 | cnex 11194 | . . 3 β’ β β V | |
3 | fex2 7927 | . . 3 β’ ((β:ββΆβ β§ β β V β§ β β V) β β β V) | |
4 | 1, 2, 2, 3 | mp3an 1460 | . 2 β’ β β V |
5 | cnfldstr 21147 | . . 3 β’ βfld Struct β¨1, ;13β© | |
6 | starvid 17253 | . . 3 β’ *π = Slot (*πβndx) | |
7 | ssun2 4174 | . . . 4 β’ {β¨(*πβndx), ββ©} β ({β¨(Baseβndx), ββ©, β¨(+gβndx), (π’ β β, π£ β β β¦ (π’ + π£))β©, β¨(.rβndx), (π’ β β, π£ β β β¦ (π’ Β· π£))β©} βͺ {β¨(*πβndx), ββ©}) | |
8 | ssun1 4173 | . . . . 5 β’ ({β¨(Baseβndx), ββ©, β¨(+gβndx), (π’ β β, π£ β β β¦ (π’ + π£))β©, β¨(.rβndx), (π’ β β, π£ β β β¦ (π’ Β· π£))β©} βͺ {β¨(*πβndx), ββ©}) β (({β¨(Baseβndx), ββ©, β¨(+gβndx), (π’ β β, π£ β β β¦ (π’ + π£))β©, β¨(.rβndx), (π’ β β, π£ β β β¦ (π’ Β· π£))β©} βͺ {β¨(*πβndx), ββ©}) βͺ ({β¨(TopSetβndx), (MetOpenβ(abs β β ))β©, β¨(leβndx), β€ β©, β¨(distβndx), (abs β β )β©} βͺ {β¨(UnifSetβndx), (metUnifβ(abs β β ))β©})) | |
9 | gg-dfcnfld 35474 | . . . . 5 β’ βfld = (({β¨(Baseβndx), ββ©, β¨(+gβndx), (π’ β β, π£ β β β¦ (π’ + π£))β©, β¨(.rβndx), (π’ β β, π£ β β β¦ (π’ Β· π£))β©} βͺ {β¨(*πβndx), ββ©}) βͺ ({β¨(TopSetβndx), (MetOpenβ(abs β β ))β©, β¨(leβndx), β€ β©, β¨(distβndx), (abs β β )β©} βͺ {β¨(UnifSetβndx), (metUnifβ(abs β β ))β©})) | |
10 | 8, 9 | sseqtrri 4020 | . . . 4 β’ ({β¨(Baseβndx), ββ©, β¨(+gβndx), (π’ β β, π£ β β β¦ (π’ + π£))β©, β¨(.rβndx), (π’ β β, π£ β β β¦ (π’ Β· π£))β©} βͺ {β¨(*πβndx), ββ©}) β βfld |
11 | 7, 10 | sstri 3992 | . . 3 β’ {β¨(*πβndx), ββ©} β βfld |
12 | 5, 6, 11 | strfv 17142 | . 2 β’ (β β V β β = (*πββfld)) |
13 | 4, 12 | ax-mp 5 | 1 β’ β = (*πββfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 Vcvv 3473 βͺ cun 3947 {csn 4629 {ctp 4633 β¨cop 4635 β ccom 5681 βΆwf 6540 βcfv 6544 (class class class)co 7412 β cmpo 7414 βcc 11111 1c1 11114 + caddc 11116 Β· cmul 11118 β€ cle 11254 β cmin 11449 3c3 12273 ;cdc 12682 βccj 15048 abscabs 15186 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 *πcstv 17204 TopSetcts 17208 lecple 17209 distcds 17211 UnifSetcunif 17212 MetOpencmopn 21135 metUnifcmetu 21136 βfldccnfld 21145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-cj 15051 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-cnfld 21146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |