MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpnei Structured version   Visualization version   GIF version

Theorem tpnei 23076
Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 23073. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
tpnei (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem tpnei
StepHypRef Expression
1 tpnei.1 . . . 4 𝑋 = 𝐽
21topopn 22861 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 opnneiss 23073 . . . 4 ((𝐽 ∈ Top ∧ 𝑋𝐽𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
433exp 1119 . . 3 (𝐽 ∈ Top → (𝑋𝐽 → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆))))
52, 4mpd 15 . 2 (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
6 ssnei 23065 . . 3 ((𝐽 ∈ Top ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
76ex 412 . 2 (𝐽 ∈ Top → (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑋))
85, 7impbid 212 1 (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wss 3931   cuni 4887  cfv 6541  Topctop 22848  neicnei 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-top 22849  df-nei 23053
This theorem is referenced by:  neiuni  23077  neifil  23835  gneispa  44120
  Copyright terms: Public domain W3C validator