MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpnei Structured version   Visualization version   GIF version

Theorem tpnei 23086
Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 23083. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
tpnei (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem tpnei
StepHypRef Expression
1 tpnei.1 . . . 4 𝑋 = 𝐽
21topopn 22869 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 opnneiss 23083 . . . 4 ((𝐽 ∈ Top ∧ 𝑋𝐽𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
433exp 1116 . . 3 (𝐽 ∈ Top → (𝑋𝐽 → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆))))
52, 4mpd 15 . 2 (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
6 ssnei 23075 . . 3 ((𝐽 ∈ Top ∧ 𝑋 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
76ex 411 . 2 (𝐽 ∈ Top → (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑋))
85, 7impbid 211 1 (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wss 3944   cuni 4909  cfv 6549  Topctop 22856  neicnei 23062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-top 22857  df-nei 23063
This theorem is referenced by:  neiuni  23087  neifil  23845  gneispa  43707
  Copyright terms: Public domain W3C validator