| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapclsntr | Structured version Visualization version GIF version | ||
| Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 35179. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapclsntr.x | ⊢ 𝑋 = ∪ 𝐽 |
| dssmapclsntr.k | ⊢ 𝐾 = (cls‘𝐽) |
| dssmapclsntr.i | ⊢ 𝐼 = (int‘𝐽) |
| dssmapclsntr.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapclsntr.d | ⊢ 𝐷 = (𝑂‘𝑋) |
| Ref | Expression |
|---|---|
| dssmapclsntr | ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapclsntr.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | dssmapclsntr.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
| 3 | dssmapclsntr.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
| 4 | dssmapclsntr.o | . . . . 5 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 5 | dssmapclsntr.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝑋) | |
| 6 | 1, 2, 3, 4, 5 | dssmapntrcls 44101 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) |
| 7 | 6 | eqcomd 2735 | . . 3 ⊢ (𝐽 ∈ Top → (𝐷‘𝐾) = 𝐼) |
| 8 | 1 | topopn 22809 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 9 | 4, 5, 8 | dssmapf1od 43994 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋)) |
| 10 | 1, 2 | clselmap 44100 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
| 11 | f1ocnvfv 7219 | . . . 4 ⊢ ((𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) |
| 13 | 7, 12 | mpd 15 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = 𝐾) |
| 14 | 4, 5, 8 | dssmapnvod 43993 | . . 3 ⊢ (𝐽 ∈ Top → ◡𝐷 = 𝐷) |
| 15 | 14 | fveq1d 6828 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = (𝐷‘𝐼)) |
| 16 | 13, 15 | eqtr3d 2766 | 1 ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 𝒫 cpw 4553 ∪ cuni 4861 ↦ cmpt 5176 ◡ccnv 5622 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Topctop 22796 intcnt 22920 clsccl 22921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-top 22797 df-cld 22922 df-ntr 22923 df-cls 22924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |