Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapclsntr Structured version   Visualization version   GIF version

Theorem dssmapclsntr 44090
Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 35196. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = 𝐽
dssmapclsntr.k 𝐾 = (cls‘𝐽)
dssmapclsntr.i 𝐼 = (int‘𝐽)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapclsntr.d 𝐷 = (𝑂𝑋)
Assertion
Ref Expression
dssmapclsntr (𝐽 ∈ Top → 𝐾 = (𝐷𝐼))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapclsntr
StepHypRef Expression
1 dssmapclsntr.x . . . . 5 𝑋 = 𝐽
2 dssmapclsntr.k . . . . 5 𝐾 = (cls‘𝐽)
3 dssmapclsntr.i . . . . 5 𝐼 = (int‘𝐽)
4 dssmapclsntr.o . . . . 5 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
5 dssmapclsntr.d . . . . 5 𝐷 = (𝑂𝑋)
61, 2, 3, 4, 5dssmapntrcls 44089 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
76eqcomd 2736 . . 3 (𝐽 ∈ Top → (𝐷𝐾) = 𝐼)
81topopn 22799 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
94, 5, 8dssmapf1od 43982 . . . 4 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋))
101, 2clselmap 44088 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
11 f1ocnvfv 7260 . . . 4 ((𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋)) → ((𝐷𝐾) = 𝐼 → (𝐷𝐼) = 𝐾))
129, 10, 11syl2anc 584 . . 3 (𝐽 ∈ Top → ((𝐷𝐾) = 𝐼 → (𝐷𝐼) = 𝐾))
137, 12mpd 15 . 2 (𝐽 ∈ Top → (𝐷𝐼) = 𝐾)
144, 5, 8dssmapnvod 43981 . . 3 (𝐽 ∈ Top → 𝐷 = 𝐷)
1514fveq1d 6867 . 2 (𝐽 ∈ Top → (𝐷𝐼) = (𝐷𝐼))
1613, 15eqtr3d 2767 1 (𝐽 ∈ Top → 𝐾 = (𝐷𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3455  cdif 3919  𝒫 cpw 4571   cuni 4879  cmpt 5196  ccnv 5645  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  m cmap 8803  Topctop 22786  intcnt 22910  clsccl 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-top 22787  df-cld 22912  df-ntr 22913  df-cls 22914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator