![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapclsntr | Structured version Visualization version GIF version |
Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 34198. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
dssmapclsntr.x | β’ π = βͺ π½ |
dssmapclsntr.k | β’ πΎ = (clsβπ½) |
dssmapclsntr.i | β’ πΌ = (intβπ½) |
dssmapclsntr.o | β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π )))))) |
dssmapclsntr.d | β’ π· = (πβπ) |
Ref | Expression |
---|---|
dssmapclsntr | β’ (π½ β Top β πΎ = (π·βπΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapclsntr.x | . . . . 5 β’ π = βͺ π½ | |
2 | dssmapclsntr.k | . . . . 5 β’ πΎ = (clsβπ½) | |
3 | dssmapclsntr.i | . . . . 5 β’ πΌ = (intβπ½) | |
4 | dssmapclsntr.o | . . . . 5 β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π )))))) | |
5 | dssmapclsntr.d | . . . . 5 β’ π· = (πβπ) | |
6 | 1, 2, 3, 4, 5 | dssmapntrcls 42879 | . . . 4 β’ (π½ β Top β πΌ = (π·βπΎ)) |
7 | 6 | eqcomd 2739 | . . 3 β’ (π½ β Top β (π·βπΎ) = πΌ) |
8 | 1 | topopn 22408 | . . . . 5 β’ (π½ β Top β π β π½) |
9 | 4, 5, 8 | dssmapf1od 42772 | . . . 4 β’ (π½ β Top β π·:(π« π βm π« π)β1-1-ontoβ(π« π βm π« π)) |
10 | 1, 2 | clselmap 42878 | . . . 4 β’ (π½ β Top β πΎ β (π« π βm π« π)) |
11 | f1ocnvfv 7276 | . . . 4 β’ ((π·:(π« π βm π« π)β1-1-ontoβ(π« π βm π« π) β§ πΎ β (π« π βm π« π)) β ((π·βπΎ) = πΌ β (β‘π·βπΌ) = πΎ)) | |
12 | 9, 10, 11 | syl2anc 585 | . . 3 β’ (π½ β Top β ((π·βπΎ) = πΌ β (β‘π·βπΌ) = πΎ)) |
13 | 7, 12 | mpd 15 | . 2 β’ (π½ β Top β (β‘π·βπΌ) = πΎ) |
14 | 4, 5, 8 | dssmapnvod 42771 | . . 3 β’ (π½ β Top β β‘π· = π·) |
15 | 14 | fveq1d 6894 | . 2 β’ (π½ β Top β (β‘π·βπΌ) = (π·βπΌ)) |
16 | 13, 15 | eqtr3d 2775 | 1 β’ (π½ β Top β πΎ = (π·βπΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 β cdif 3946 π« cpw 4603 βͺ cuni 4909 β¦ cmpt 5232 β‘ccnv 5676 β1-1-ontoβwf1o 6543 βcfv 6544 (class class class)co 7409 βm cmap 8820 Topctop 22395 intcnt 22521 clsccl 22522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-top 22396 df-cld 22523 df-ntr 22524 df-cls 22525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |