| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapclsntr | Structured version Visualization version GIF version | ||
| Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 35258. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapclsntr.x | ⊢ 𝑋 = ∪ 𝐽 |
| dssmapclsntr.k | ⊢ 𝐾 = (cls‘𝐽) |
| dssmapclsntr.i | ⊢ 𝐼 = (int‘𝐽) |
| dssmapclsntr.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapclsntr.d | ⊢ 𝐷 = (𝑂‘𝑋) |
| Ref | Expression |
|---|---|
| dssmapclsntr | ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapclsntr.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | dssmapclsntr.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
| 3 | dssmapclsntr.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
| 4 | dssmapclsntr.o | . . . . 5 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 5 | dssmapclsntr.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝑋) | |
| 6 | 1, 2, 3, 4, 5 | dssmapntrcls 44226 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) |
| 7 | 6 | eqcomd 2737 | . . 3 ⊢ (𝐽 ∈ Top → (𝐷‘𝐾) = 𝐼) |
| 8 | 1 | topopn 22827 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 9 | 4, 5, 8 | dssmapf1od 44119 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋)) |
| 10 | 1, 2 | clselmap 44225 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
| 11 | f1ocnvfv 7218 | . . . 4 ⊢ ((𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) |
| 13 | 7, 12 | mpd 15 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = 𝐾) |
| 14 | 4, 5, 8 | dssmapnvod 44118 | . . 3 ⊢ (𝐽 ∈ Top → ◡𝐷 = 𝐷) |
| 15 | 14 | fveq1d 6830 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = (𝐷‘𝐼)) |
| 16 | 13, 15 | eqtr3d 2768 | 1 ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 𝒫 cpw 4549 ∪ cuni 4858 ↦ cmpt 5174 ◡ccnv 5618 –1-1-onto→wf1o 6486 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 Topctop 22814 intcnt 22938 clsccl 22939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-top 22815 df-cld 22940 df-ntr 22941 df-cls 22942 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |