Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapclsntr | Structured version Visualization version GIF version |
Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 32686. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
dssmapclsntr.x | ⊢ 𝑋 = ∪ 𝐽 |
dssmapclsntr.k | ⊢ 𝐾 = (cls‘𝐽) |
dssmapclsntr.i | ⊢ 𝐼 = (int‘𝐽) |
dssmapclsntr.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapclsntr.d | ⊢ 𝐷 = (𝑂‘𝑋) |
Ref | Expression |
---|---|
dssmapclsntr | ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapclsntr.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | dssmapclsntr.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
3 | dssmapclsntr.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
4 | dssmapclsntr.o | . . . . 5 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
5 | dssmapclsntr.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝑋) | |
6 | 1, 2, 3, 4, 5 | dssmapntrcls 41205 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) |
7 | 6 | eqcomd 2765 | . . 3 ⊢ (𝐽 ∈ Top → (𝐷‘𝐾) = 𝐼) |
8 | 1 | topopn 21607 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | 4, 5, 8 | dssmapf1od 41096 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋)) |
10 | 1, 2 | clselmap 41204 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
11 | f1ocnvfv 7028 | . . . 4 ⊢ ((𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) | |
12 | 9, 10, 11 | syl2anc 588 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) |
13 | 7, 12 | mpd 15 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = 𝐾) |
14 | 4, 5, 8 | dssmapnvod 41095 | . . 3 ⊢ (𝐽 ∈ Top → ◡𝐷 = 𝐷) |
15 | 14 | fveq1d 6661 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = (𝐷‘𝐼)) |
16 | 13, 15 | eqtr3d 2796 | 1 ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∖ cdif 3856 𝒫 cpw 4495 ∪ cuni 4799 ↦ cmpt 5113 ◡ccnv 5524 –1-1-onto→wf1o 6335 ‘cfv 6336 (class class class)co 7151 ↑m cmap 8417 Topctop 21594 intcnt 21718 clsccl 21719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-map 8419 df-top 21595 df-cld 21720 df-ntr 21721 df-cls 21722 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |