Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapclsntr Structured version   Visualization version   GIF version

Theorem dssmapclsntr 41739
Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 33169. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = 𝐽
dssmapclsntr.k 𝐾 = (cls‘𝐽)
dssmapclsntr.i 𝐼 = (int‘𝐽)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapclsntr.d 𝐷 = (𝑂𝑋)
Assertion
Ref Expression
dssmapclsntr (𝐽 ∈ Top → 𝐾 = (𝐷𝐼))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapclsntr
StepHypRef Expression
1 dssmapclsntr.x . . . . 5 𝑋 = 𝐽
2 dssmapclsntr.k . . . . 5 𝐾 = (cls‘𝐽)
3 dssmapclsntr.i . . . . 5 𝐼 = (int‘𝐽)
4 dssmapclsntr.o . . . . 5 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
5 dssmapclsntr.d . . . . 5 𝐷 = (𝑂𝑋)
61, 2, 3, 4, 5dssmapntrcls 41738 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
76eqcomd 2744 . . 3 (𝐽 ∈ Top → (𝐷𝐾) = 𝐼)
81topopn 22055 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
94, 5, 8dssmapf1od 41629 . . . 4 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋))
101, 2clselmap 41737 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
11 f1ocnvfv 7150 . . . 4 ((𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋)) → ((𝐷𝐾) = 𝐼 → (𝐷𝐼) = 𝐾))
129, 10, 11syl2anc 584 . . 3 (𝐽 ∈ Top → ((𝐷𝐾) = 𝐼 → (𝐷𝐼) = 𝐾))
137, 12mpd 15 . 2 (𝐽 ∈ Top → (𝐷𝐼) = 𝐾)
144, 5, 8dssmapnvod 41628 . . 3 (𝐽 ∈ Top → 𝐷 = 𝐷)
1514fveq1d 6776 . 2 (𝐽 ∈ Top → (𝐷𝐼) = (𝐷𝐼))
1613, 15eqtr3d 2780 1 (𝐽 ∈ Top → 𝐾 = (𝐷𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  𝒫 cpw 4533   cuni 4839  cmpt 5157  ccnv 5588  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  m cmap 8615  Topctop 22042  intcnt 22168  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator