![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapclsntr | Structured version Visualization version GIF version |
Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 35204. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
dssmapclsntr.x | ⊢ 𝑋 = ∪ 𝐽 |
dssmapclsntr.k | ⊢ 𝐾 = (cls‘𝐽) |
dssmapclsntr.i | ⊢ 𝐼 = (int‘𝐽) |
dssmapclsntr.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapclsntr.d | ⊢ 𝐷 = (𝑂‘𝑋) |
Ref | Expression |
---|---|
dssmapclsntr | ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapclsntr.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | dssmapclsntr.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
3 | dssmapclsntr.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
4 | dssmapclsntr.o | . . . . 5 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
5 | dssmapclsntr.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝑋) | |
6 | 1, 2, 3, 4, 5 | dssmapntrcls 44132 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) |
7 | 6 | eqcomd 2742 | . . 3 ⊢ (𝐽 ∈ Top → (𝐷‘𝐾) = 𝐼) |
8 | 1 | topopn 22934 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
9 | 4, 5, 8 | dssmapf1od 44025 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋)) |
10 | 1, 2 | clselmap 44131 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
11 | f1ocnvfv 7302 | . . . 4 ⊢ ((𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) | |
12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) |
13 | 7, 12 | mpd 15 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = 𝐾) |
14 | 4, 5, 8 | dssmapnvod 44024 | . . 3 ⊢ (𝐽 ∈ Top → ◡𝐷 = 𝐷) |
15 | 14 | fveq1d 6913 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = (𝐷‘𝐼)) |
16 | 13, 15 | eqtr3d 2778 | 1 ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∖ cdif 3961 𝒫 cpw 4606 ∪ cuni 4913 ↦ cmpt 5232 ◡ccnv 5689 –1-1-onto→wf1o 6565 ‘cfv 6566 (class class class)co 7435 ↑m cmap 8871 Topctop 22921 intcnt 23047 clsccl 23048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-1st 8019 df-2nd 8020 df-map 8873 df-top 22922 df-cld 23049 df-ntr 23050 df-cls 23051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |