| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapclsntr | Structured version Visualization version GIF version | ||
| Description: The closure and interior operators on a topology are duals of each other. See also kur14lem2 35194. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapclsntr.x | ⊢ 𝑋 = ∪ 𝐽 |
| dssmapclsntr.k | ⊢ 𝐾 = (cls‘𝐽) |
| dssmapclsntr.i | ⊢ 𝐼 = (int‘𝐽) |
| dssmapclsntr.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapclsntr.d | ⊢ 𝐷 = (𝑂‘𝑋) |
| Ref | Expression |
|---|---|
| dssmapclsntr | ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapclsntr.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | dssmapclsntr.k | . . . . 5 ⊢ 𝐾 = (cls‘𝐽) | |
| 3 | dssmapclsntr.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
| 4 | dssmapclsntr.o | . . . . 5 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 5 | dssmapclsntr.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝑋) | |
| 6 | 1, 2, 3, 4, 5 | dssmapntrcls 44117 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) |
| 7 | 6 | eqcomd 2735 | . . 3 ⊢ (𝐽 ∈ Top → (𝐷‘𝐾) = 𝐼) |
| 8 | 1 | topopn 22793 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 9 | 4, 5, 8 | dssmapf1od 44010 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋)) |
| 10 | 1, 2 | clselmap 44116 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
| 11 | f1ocnvfv 7253 | . . . 4 ⊢ ((𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋 ↑m 𝒫 𝑋) ∧ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝐽 ∈ Top → ((𝐷‘𝐾) = 𝐼 → (◡𝐷‘𝐼) = 𝐾)) |
| 13 | 7, 12 | mpd 15 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = 𝐾) |
| 14 | 4, 5, 8 | dssmapnvod 44009 | . . 3 ⊢ (𝐽 ∈ Top → ◡𝐷 = 𝐷) |
| 15 | 14 | fveq1d 6860 | . 2 ⊢ (𝐽 ∈ Top → (◡𝐷‘𝐼) = (𝐷‘𝐼)) |
| 16 | 13, 15 | eqtr3d 2766 | 1 ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 𝒫 cpw 4563 ∪ cuni 4871 ↦ cmpt 5188 ◡ccnv 5637 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Topctop 22780 intcnt 22904 clsccl 22905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-top 22781 df-cld 22906 df-ntr 22907 df-cls 22908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |