![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnei2 | Structured version Visualization version GIF version |
Description: Any subset π of π containing a neighborhood π of a set π is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neips.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ssnei2 | β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β π) | |
2 | neii2 22963 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ β π½ (π β π β§ π β π)) | |
3 | sstr2 3984 | . . . . . . 7 β’ (π β π β (π β π β π β π)) | |
4 | 3 | com12 32 | . . . . . 6 β’ (π β π β (π β π β π β π)) |
5 | 4 | anim2d 611 | . . . . 5 β’ (π β π β ((π β π β§ π β π) β (π β π β§ π β π))) |
6 | 5 | reximdv 3164 | . . . 4 β’ (π β π β (βπ β π½ (π β π β§ π β π) β βπ β π½ (π β π β§ π β π))) |
7 | 2, 6 | mpan9 506 | . . 3 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π β π) β βπ β π½ (π β π β§ π β π)) |
8 | 7 | adantrr 714 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
9 | neips.1 | . . . . 5 β’ π = βͺ π½ | |
10 | 9 | neiss2 22956 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π) |
11 | 9 | isnei 22958 | . . . 4 β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 10, 11 | syldan 590 | . . 3 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | 12 | adantr 480 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
14 | 1, 8, 13 | mpbir2and 710 | 1 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3064 β wss 3943 βͺ cuni 4902 βcfv 6536 Topctop 22746 neicnei 22952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-top 22747 df-nei 22953 |
This theorem is referenced by: topssnei 22979 nllyrest 23341 nllyidm 23344 hausllycmp 23349 cldllycmp 23350 txnlly 23492 neifil 23735 utop2nei 24106 cnllycmp 24833 gneispb 43439 |
Copyright terms: Public domain | W3C validator |