MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnei2 Structured version   Visualization version   GIF version

Theorem ssnei2 21718
Description: Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
ssnei2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem ssnei2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprr 771 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀𝑋)
2 neii2 21710 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
3 sstr2 3973 . . . . . . 7 (𝑔𝑁 → (𝑁𝑀𝑔𝑀))
43com12 32 . . . . . 6 (𝑁𝑀 → (𝑔𝑁𝑔𝑀))
54anim2d 613 . . . . 5 (𝑁𝑀 → ((𝑆𝑔𝑔𝑁) → (𝑆𝑔𝑔𝑀)))
65reximdv 3273 . . . 4 (𝑁𝑀 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀)))
72, 6mpan9 509 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑁𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
87adantrr 715 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))
9 neips.1 . . . . 5 𝑋 = 𝐽
109neiss2 21703 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
119isnei 21705 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1210, 11syldan 593 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
1312adantr 483 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑀))))
141, 8, 13mpbir2and 711 1 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  wss 3935   cuni 4831  cfv 6349  Topctop 21495  neicnei 21699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-top 21496  df-nei 21700
This theorem is referenced by:  topssnei  21726  nllyrest  22088  nllyidm  22091  hausllycmp  22096  cldllycmp  22097  txnlly  22239  neifil  22482  utop2nei  22853  cnllycmp  23554  gneispb  40474
  Copyright terms: Public domain W3C validator