![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnei2 | Structured version Visualization version GIF version |
Description: Any subset π of π containing a neighborhood π of a set π is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neips.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ssnei2 | β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β π) | |
2 | neii2 22603 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ β π½ (π β π β§ π β π)) | |
3 | sstr2 3988 | . . . . . . 7 β’ (π β π β (π β π β π β π)) | |
4 | 3 | com12 32 | . . . . . 6 β’ (π β π β (π β π β π β π)) |
5 | 4 | anim2d 612 | . . . . 5 β’ (π β π β ((π β π β§ π β π) β (π β π β§ π β π))) |
6 | 5 | reximdv 3170 | . . . 4 β’ (π β π β (βπ β π½ (π β π β§ π β π) β βπ β π½ (π β π β§ π β π))) |
7 | 2, 6 | mpan9 507 | . . 3 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π β π) β βπ β π½ (π β π β§ π β π)) |
8 | 7 | adantrr 715 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
9 | neips.1 | . . . . 5 β’ π = βͺ π½ | |
10 | 9 | neiss2 22596 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π) |
11 | 9 | isnei 22598 | . . . 4 β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 10, 11 | syldan 591 | . . 3 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | 12 | adantr 481 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
14 | 1, 8, 13 | mpbir2and 711 | 1 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β wss 3947 βͺ cuni 4907 βcfv 6540 Topctop 22386 neicnei 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22387 df-nei 22593 |
This theorem is referenced by: topssnei 22619 nllyrest 22981 nllyidm 22984 hausllycmp 22989 cldllycmp 22990 txnlly 23132 neifil 23375 utop2nei 23746 cnllycmp 24463 gneispb 42867 |
Copyright terms: Public domain | W3C validator |