![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnei2 | Structured version Visualization version GIF version |
Description: Any subset π of π containing a neighborhood π of a set π is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neips.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ssnei2 | β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β π) | |
2 | neii2 23025 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ β π½ (π β π β§ π β π)) | |
3 | sstr2 3987 | . . . . . . 7 β’ (π β π β (π β π β π β π)) | |
4 | 3 | com12 32 | . . . . . 6 β’ (π β π β (π β π β π β π)) |
5 | 4 | anim2d 611 | . . . . 5 β’ (π β π β ((π β π β§ π β π) β (π β π β§ π β π))) |
6 | 5 | reximdv 3167 | . . . 4 β’ (π β π β (βπ β π½ (π β π β§ π β π) β βπ β π½ (π β π β§ π β π))) |
7 | 2, 6 | mpan9 506 | . . 3 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π β π) β βπ β π½ (π β π β§ π β π)) |
8 | 7 | adantrr 716 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β βπ β π½ (π β π β§ π β π)) |
9 | neips.1 | . . . . 5 β’ π = βͺ π½ | |
10 | 9 | neiss2 23018 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π) |
11 | 9 | isnei 23020 | . . . 4 β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 10, 11 | syldan 590 | . . 3 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | 12 | adantr 480 | . 2 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
14 | 1, 8, 13 | mpbir2and 712 | 1 β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π β π β§ π β π)) β π β ((neiβπ½)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βwrex 3067 β wss 3947 βͺ cuni 4908 βcfv 6548 Topctop 22808 neicnei 23014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-top 22809 df-nei 23015 |
This theorem is referenced by: topssnei 23041 nllyrest 23403 nllyidm 23406 hausllycmp 23411 cldllycmp 23412 txnlly 23554 neifil 23797 utop2nei 24168 cnllycmp 24895 gneispb 43561 |
Copyright terms: Public domain | W3C validator |