| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnei2 | Structured version Visualization version GIF version | ||
| Description: Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ssnei2 | ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ⊆ 𝑋) | |
| 2 | neii2 23021 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) | |
| 3 | sstr2 3941 | . . . . . . 7 ⊢ (𝑔 ⊆ 𝑁 → (𝑁 ⊆ 𝑀 → 𝑔 ⊆ 𝑀)) | |
| 4 | 3 | com12 32 | . . . . . 6 ⊢ (𝑁 ⊆ 𝑀 → (𝑔 ⊆ 𝑁 → 𝑔 ⊆ 𝑀)) |
| 5 | 4 | anim2d 612 | . . . . 5 ⊢ (𝑁 ⊆ 𝑀 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀))) |
| 6 | 5 | reximdv 3147 | . . . 4 ⊢ (𝑁 ⊆ 𝑀 → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀))) |
| 7 | 2, 6 | mpan9 506 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑁 ⊆ 𝑀) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀)) |
| 8 | 7 | adantrr 717 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀)) |
| 9 | neips.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 10 | 9 | neiss2 23014 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
| 11 | 9 | isnei 23016 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀)))) |
| 12 | 10, 11 | syldan 591 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀)))) |
| 13 | 12 | adantr 480 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → (𝑀 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑀 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑀)))) |
| 14 | 1, 8, 13 | mpbir2and 713 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 neicnei 23010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22807 df-nei 23011 |
| This theorem is referenced by: topssnei 23037 nllyrest 23399 nllyidm 23402 hausllycmp 23407 cldllycmp 23408 txnlly 23550 neifil 23793 utop2nei 24163 cnllycmp 24880 gneispb 44163 |
| Copyright terms: Public domain | W3C validator |