Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricref Structured version   Visualization version   GIF version

Theorem gricref 47924
Description: Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 29-Apr-2025.)
Assertion
Ref Expression
gricref (𝐺 ∈ UHGraph → 𝐺𝑔𝑟 𝐺)

Proof of Theorem gricref
StepHypRef Expression
1 grimid 47890 . 2 (𝐺 ∈ UHGraph → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐺))
2 brgrici 47917 . 2 (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐺) → 𝐺𝑔𝑟 𝐺)
31, 2syl 17 1 (𝐺 ∈ UHGraph → 𝐺𝑔𝑟 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110   I cid 5535  cres 5643  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  UHGraphcuhgr 28990   GraphIso cgrim 47879  𝑔𝑟 cgric 47880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-uhgr 28992  df-grim 47882  df-gric 47885
This theorem is referenced by:  gricer  47928  grlicref  48008
  Copyright terms: Public domain W3C validator