Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricuspgr Structured version   Visualization version   GIF version

Theorem gricuspgr 47898
Description: The "is isomorphic to" relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.) (Proof shortened by AV, 5-May-2025.)
Hypotheses
Ref Expression
gricushgr.v 𝑉 = (Vtx‘𝐴)
gricushgr.w 𝑊 = (Vtx‘𝐵)
gricushgr.e 𝐸 = (Edg‘𝐴)
gricushgr.k 𝐾 = (Edg‘𝐵)
Assertion
Ref Expression
gricuspgr ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐸,𝑎,𝑏,𝑓   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏
Allowed substitution hints:   𝐾(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem gricuspgr
StepHypRef Expression
1 brgric 47892 . . . 4 (𝐴𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅)
2 n0 4333 . . . 4 ((𝐴 GraphIso 𝐵) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
31, 2bitri 275 . . 3 (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
43a1i 11 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)))
5 gricushgr.v . . . 4 𝑉 = (Vtx‘𝐴)
6 gricushgr.w . . . 4 𝑊 = (Vtx‘𝐵)
7 gricushgr.e . . . 4 𝐸 = (Edg‘𝐴)
8 gricushgr.k . . . 4 𝐾 = (Edg‘𝐵)
95, 6, 7, 8isuspgrim 47876 . . 3 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
109exbidv 1921 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
114, 10bitrd 279 1 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  c0 4313  {cpr 4608   class class class wbr 5124  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  Edgcedg 29031  USPGraphcuspgr 29132   GraphIso cgrim 47855  𝑔𝑟 cgric 47856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-edg 29032  df-uhgr 29042  df-upgr 29066  df-uspgr 29134  df-grim 47858  df-gric 47861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator