Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricuspgr Structured version   Visualization version   GIF version

Theorem gricuspgr 47840
Description: The "is isomorphic to" relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.) (Proof shortened by AV, 5-May-2025.)
Hypotheses
Ref Expression
gricushgr.v 𝑉 = (Vtx‘𝐴)
gricushgr.w 𝑊 = (Vtx‘𝐵)
gricushgr.e 𝐸 = (Edg‘𝐴)
gricushgr.k 𝐾 = (Edg‘𝐵)
Assertion
Ref Expression
gricuspgr ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐸,𝑎,𝑏,𝑓   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏
Allowed substitution hints:   𝐾(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem gricuspgr
StepHypRef Expression
1 brgric 47834 . . . 4 (𝐴𝑔𝑟 𝐵 ↔ (𝐴 GraphIso 𝐵) ≠ ∅)
2 n0 4326 . . . 4 ((𝐴 GraphIso 𝐵) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
31, 2bitri 275 . . 3 (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵))
43a1i 11 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵)))
5 gricushgr.v . . . 4 𝑉 = (Vtx‘𝐴)
6 gricushgr.w . . . 4 𝑊 = (Vtx‘𝐵)
7 gricushgr.e . . . 4 𝐸 = (Edg‘𝐴)
8 gricushgr.k . . . 4 𝐾 = (Edg‘𝐵)
95, 6, 7, 8isuspgrim 47828 . . 3 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
109exbidv 1920 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (∃𝑓 𝑓 ∈ (𝐴 GraphIso 𝐵) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
114, 10bitrd 279 1 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴𝑔𝑟 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  c0 4306  {cpr 4601   class class class wbr 5117  1-1-ontowf1o 6527  cfv 6528  (class class class)co 7400  Vtxcvtx 28909  Edgcedg 28960  USPGraphcuspgr 29061   GraphIso cgrim 47814  𝑔𝑟 cgric 47815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-dju 9908  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-n0 12495  df-xnn0 12568  df-z 12582  df-uz 12846  df-fz 13515  df-hash 14339  df-edg 28961  df-uhgr 28971  df-upgr 28995  df-uspgr 29063  df-grim 47817  df-gric 47820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator