MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvf Structured version   Visualization version   GIF version

Theorem grpinvf 18867
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
grpinvcl.b 𝐵 = (Base‘𝐺)
grpinvcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvf (𝐺 ∈ Grp → 𝑁:𝐵𝐵)

Proof of Theorem grpinvf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvcl.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2732 . . . 4 (+g𝐺) = (+g𝐺)
3 eqid 2732 . . . 4 (0g𝐺) = (0g𝐺)
41, 2, 3grpinveu 18855 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃!𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))
5 riotacl 7379 . . 3 (∃!𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺) → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ 𝐵)
64, 5syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ 𝐵)
7 grpinvcl.n . . 3 𝑁 = (invg𝐺)
81, 2, 3, 7grpinvfval 18859 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
96, 8fmptd 7110 1 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ∃!wreu 3374  wf 6536  cfv 6540  crio 7360  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Grpcgrp 18815  invgcminusg 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-riota 7361  df-ov 7408  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819
This theorem is referenced by:  grpinvcl  18868  isgrpinv  18874  grpinvcnv  18887  grpinvf1o  18889  grp1inv  18927  pwsinvg  18932  pwssub  18933  oppginv  19220  invoppggim  19221  symgtrinv  19334  invghm  19695  gsumzinv  19807  dprdfinv  19883  grpvlinv  21888  grpvrinv  21889  mdetralt  22101  istgp2  23586  subgtgp  23600  symgtgp  23601  tgpconncomp  23608  prdstgpd  23620  tsmssub  23644  tsmsxplem1  23648  tlmtgp  23691  nrginvrcn  24200
  Copyright terms: Public domain W3C validator