| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvf | Structured version Visualization version GIF version | ||
| Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvf | ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2730 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grpinveu 18913 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
| 5 | riotacl 7364 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) |
| 7 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 8 | 1, 2, 3, 7 | grpinvfval 18917 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 9 | 6, 8 | fmptd 7089 | 1 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3354 ⟶wf 6510 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 invgcminusg 18873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 |
| This theorem is referenced by: grpinvcl 18926 isgrpinv 18932 grpinvcnv 18945 grpinvf1o 18948 grp1inv 18987 pwsinvg 18992 pwssub 18993 oppginv 19298 invoppggim 19299 symgtrinv 19409 invghm 19770 gsumzinv 19882 dprdfinv 19958 grpvlinv 22292 grpvrinv 22293 mdetralt 22502 istgp2 23985 subgtgp 23999 symgtgp 24000 tgpconncomp 24007 prdstgpd 24019 tsmssub 24043 tsmsxplem1 24047 tlmtgp 24090 nrginvrcn 24587 |
| Copyright terms: Public domain | W3C validator |