![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvf | Structured version Visualization version GIF version |
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvf | ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2733 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2733 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | grpinveu 18855 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
5 | riotacl 7378 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) |
7 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
8 | 1, 2, 3, 7 | grpinvfval 18859 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 6, 8 | fmptd 7109 | 1 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃!wreu 3375 ⟶wf 6536 ‘cfv 6540 ℩crio 7359 (class class class)co 7404 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Grpcgrp 18815 invgcminusg 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-riota 7360 df-ov 7407 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 |
This theorem is referenced by: grpinvcl 18868 isgrpinv 18874 grpinvcnv 18887 grpinvf1o 18889 grp1inv 18927 pwsinvg 18932 pwssub 18933 oppginv 19219 invoppggim 19220 symgtrinv 19333 invghm 19693 gsumzinv 19805 dprdfinv 19881 grpvlinv 21879 grpvrinv 21880 mdetralt 22092 istgp2 23577 subgtgp 23591 symgtgp 23592 tgpconncomp 23599 prdstgpd 23611 tsmssub 23635 tsmsxplem1 23639 tlmtgp 23682 nrginvrcn 24191 |
Copyright terms: Public domain | W3C validator |