MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvf Structured version   Visualization version   GIF version

Theorem grpinvf 18981
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
grpinvcl.b 𝐵 = (Base‘𝐺)
grpinvcl.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvf (𝐺 ∈ Grp → 𝑁:𝐵𝐵)

Proof of Theorem grpinvf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvcl.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2726 . . . 4 (+g𝐺) = (+g𝐺)
3 eqid 2726 . . . 4 (0g𝐺) = (0g𝐺)
41, 2, 3grpinveu 18969 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃!𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺))
5 riotacl 7398 . . 3 (∃!𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺) → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ 𝐵)
64, 5syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ 𝐵)
7 grpinvcl.n . . 3 𝑁 = (invg𝐺)
81, 2, 3, 7grpinvfval 18973 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
96, 8fmptd 7128 1 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  ∃!wreu 3362  wf 6550  cfv 6554  crio 7379  (class class class)co 7424  Basecbs 17213  +gcplusg 17266  0gc0g 17454  Grpcgrp 18928  invgcminusg 18929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fv 6562  df-riota 7380  df-ov 7427  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932
This theorem is referenced by:  grpinvcl  18982  isgrpinv  18988  grpinvcnv  19001  grpinvf1o  19003  grp1inv  19042  pwsinvg  19047  pwssub  19048  oppginv  19356  invoppggim  19357  symgtrinv  19470  invghm  19831  gsumzinv  19943  dprdfinv  20019  grpvlinv  22389  grpvrinv  22390  mdetralt  22601  istgp2  24086  subgtgp  24100  symgtgp  24101  tgpconncomp  24108  prdstgpd  24120  tsmssub  24144  tsmsxplem1  24148  tlmtgp  24191  nrginvrcn  24700
  Copyright terms: Public domain W3C validator