| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvf | Structured version Visualization version GIF version | ||
| Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvf | ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2733 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2733 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grpinveu 18889 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
| 5 | riotacl 7326 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) |
| 7 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 8 | 1, 2, 3, 7 | grpinvfval 18893 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 9 | 6, 8 | fmptd 7053 | 1 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃!wreu 3345 ⟶wf 6482 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 0gc0g 17345 Grpcgrp 18848 invgcminusg 18849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 |
| This theorem is referenced by: grpinvcl 18902 isgrpinv 18908 grpinvcnv 18921 grpinvf1o 18924 grp1inv 18963 pwsinvg 18968 pwssub 18969 oppginv 19273 invoppggim 19274 symgtrinv 19386 invghm 19747 gsumzinv 19859 dprdfinv 19935 grpvlinv 22314 grpvrinv 22315 mdetralt 22524 istgp2 24007 subgtgp 24021 symgtgp 24022 tgpconncomp 24029 prdstgpd 24041 tsmssub 24065 tsmsxplem1 24069 tlmtgp 24112 nrginvrcn 24608 |
| Copyright terms: Public domain | W3C validator |