![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvf | Structured version Visualization version GIF version |
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvf | ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2735 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | grpinveu 19005 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
5 | riotacl 7405 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) |
7 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
8 | 1, 2, 3, 7 | grpinvfval 19009 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 6, 8 | fmptd 7134 | 1 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃!wreu 3376 ⟶wf 6559 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Grpcgrp 18964 invgcminusg 18965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 |
This theorem is referenced by: grpinvcl 19018 isgrpinv 19024 grpinvcnv 19037 grpinvf1o 19040 grp1inv 19079 pwsinvg 19084 pwssub 19085 oppginv 19393 invoppggim 19394 symgtrinv 19505 invghm 19866 gsumzinv 19978 dprdfinv 20054 grpvlinv 22418 grpvrinv 22419 mdetralt 22630 istgp2 24115 subgtgp 24129 symgtgp 24130 tgpconncomp 24137 prdstgpd 24149 tsmssub 24173 tsmsxplem1 24177 tlmtgp 24220 nrginvrcn 24729 |
Copyright terms: Public domain | W3C validator |