![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvf | Structured version Visualization version GIF version |
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvf | ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2725 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2725 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | grpinveu 18935 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
5 | riotacl 7391 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) |
7 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
8 | 1, 2, 3, 7 | grpinvfval 18939 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 6, 8 | fmptd 7121 | 1 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃!wreu 3362 ⟶wf 6543 ‘cfv 6547 ℩crio 7372 (class class class)co 7417 Basecbs 17179 +gcplusg 17232 0gc0g 17420 Grpcgrp 18894 invgcminusg 18895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-fv 6555 df-riota 7373 df-ov 7420 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-minusg 18898 |
This theorem is referenced by: grpinvcl 18948 isgrpinv 18954 grpinvcnv 18967 grpinvf1o 18969 grp1inv 19008 pwsinvg 19013 pwssub 19014 oppginv 19317 invoppggim 19318 symgtrinv 19431 invghm 19792 gsumzinv 19904 dprdfinv 19980 grpvlinv 22328 grpvrinv 22329 mdetralt 22540 istgp2 24025 subgtgp 24039 symgtgp 24040 tgpconncomp 24047 prdstgpd 24059 tsmssub 24083 tsmsxplem1 24087 tlmtgp 24130 nrginvrcn 24639 |
Copyright terms: Public domain | W3C validator |