Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpinvcl | Structured version Visualization version GIF version |
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
3 | 1, 2 | grpinvf 18626 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
4 | 3 | ffvelrnda 6961 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Copyright terms: Public domain | W3C validator |