Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpnpncan0 Structured version   Visualization version   GIF version

Theorem grpnpncan0 18208
 Description: Cancellation law for group subtraction (npncan2 10920 analog). (Contributed by AV, 24-Nov-2019.)
Hypotheses
Ref Expression
grpnpncan0.0 0 = (0g𝐺)
Assertion
Ref Expression
grpnpncan0 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌) + (𝑌 𝑋)) = 0 )

Proof of Theorem grpnpncan0
StepHypRef Expression
1 simpl 486 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
2 simprl 770 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 simprr 772 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
4 grpsubadd.b . . . 4 𝐵 = (Base‘𝐺)
5 grpsubadd.p . . . 4 + = (+g𝐺)
6 grpsubadd.m . . . 4 = (-g𝐺)
74, 5, 6grpnpncan 18207 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 𝑌) + (𝑌 𝑋)) = (𝑋 𝑋))
81, 2, 3, 2, 7syl13anc 1369 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌) + (𝑌 𝑋)) = (𝑋 𝑋))
9 grpnpncan0.0 . . . 4 0 = (0g𝐺)
104, 9, 6grpsubid 18196 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )
1110adantrr 716 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑋) = 0 )
128, 11eqtrd 2833 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 𝑌) + (𝑌 𝑋)) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6332  (class class class)co 7145  Basecbs 16495  +gcplusg 16577  0gc0g 16725  Grpcgrp 18115  -gcsg 18117 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7684  df-2nd 7685  df-0g 16727  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-grp 18118  df-minusg 18119  df-sbg 18120 This theorem is referenced by:  cayhamlem1  21512
 Copyright terms: Public domain W3C validator