MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid Structured version   Visualization version   GIF version

Theorem grpsubid 18907
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )

Proof of Theorem grpsubid
StepHypRef Expression
1 grpsubid.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2733 . . . . 5 (+g𝐺) = (+g𝐺)
3 eqid 2733 . . . . 5 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . . 5 = (-g𝐺)
51, 2, 3, 4grpsubval 18870 . . . 4 ((𝑋𝐵𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
65anidms 568 . . 3 (𝑋𝐵 → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
76adantl 483 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
8 grpsubid.o . . 3 0 = (0g𝐺)
91, 2, 8, 3grprinv 18875 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑋)) = 0 )
107, 9eqtrd 2773 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  0gc0g 17385  Grpcgrp 18819  invgcminusg 18820  -gcsg 18821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824
This theorem is referenced by:  grppncan  18914  grpnpncan0  18919  issubg4  19025  0nsg  19049  gexdvds  19452  abladdsub4  19679  ablsubaddsub  19682  ablpncan2  19683  ablpnpcan  19687  ablnncan  19688  telgsums  19861  dprdfeq0  19892  lmodsubid  20532  dmatsubcl  22000  mdetuni0  22123  chpmat0d  22336  chpdmatlem2  22341  tgpconncomp  23617  tgpt0  23623  tgptsmscls  23654  deg1sublt  25628  lgsqrlem1  26849  archiabllem1a  32337  archiabllem2a  32340  archiabllem2c  32341  ornglmulle  32423  orngrmulle  32424  lfl0  37935  eqlkr  37969  lkrlsp  37972  lclkrlem2m  40390  lcfrlem1  40413  hdmapinvlem3  40791  rngqiprngimfolem  46775  rngqiprngfulem5  46800
  Copyright terms: Public domain W3C validator