MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid Structured version   Visualization version   GIF version

Theorem grpsubid 19042
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )

Proof of Theorem grpsubid
StepHypRef Expression
1 grpsubid.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2737 . . . . 5 (+g𝐺) = (+g𝐺)
3 eqid 2737 . . . . 5 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . . 5 = (-g𝐺)
51, 2, 3, 4grpsubval 19003 . . . 4 ((𝑋𝐵𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
65anidms 566 . . 3 (𝑋𝐵 → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
76adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
8 grpsubid.o . . 3 0 = (0g𝐺)
91, 2, 8, 3grprinv 19008 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑋)) = 0 )
107, 9eqtrd 2777 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  -gcsg 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956
This theorem is referenced by:  grppncan  19049  grpnpncan0  19054  issubg4  19163  0nsg  19187  gexdvds  19602  abladdsub4  19829  ablsubaddsub  19832  ablpncan2  19833  ablpnpcan  19837  ablnncan  19838  telgsums  20011  dprdfeq0  20042  lmodsubid  20920  rngqiprngimfolem  21300  rngqiprngfulem5  21325  dmatsubcl  22504  mdetuni0  22627  chpmat0d  22840  chpdmatlem2  22845  tgpconncomp  24121  tgpt0  24127  tgptsmscls  24158  deg1sublt  26149  lgsqrlem1  27390  archiabllem1a  33198  archiabllem2a  33201  archiabllem2c  33202  erlbr2d  33268  erler  33269  rloccring  33274  ornglmulle  33335  orngrmulle  33336  lfl0  39066  eqlkr  39100  lkrlsp  39103  lclkrlem2m  41521  lcfrlem1  41544  hdmapinvlem3  41922  aks6d1c2lem4  42128  aks6d1c5lem3  42138  aks5lem2  42188
  Copyright terms: Public domain W3C validator