Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubid | Structured version Visualization version GIF version |
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2738 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 18625 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
6 | 5 | anidms 567 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
7 | 6 | adantl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
8 | grpsubid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
9 | 1, 2, 8, 3 | grprinv 18629 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋)) = 0 ) |
10 | 7, 9 | eqtrd 2778 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 -gcsg 18579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 |
This theorem is referenced by: grppncan 18666 grpnpncan0 18671 issubg4 18774 0nsg 18797 gexdvds 19189 abladdsub4 19415 ablpncan2 19417 ablpnpcan 19421 ablnncan 19422 telgsums 19594 dprdfeq0 19625 lmodsubid 20183 dmatsubcl 21647 mdetuni0 21770 chpmat0d 21983 chpdmatlem2 21988 tgpconncomp 23264 tgpt0 23270 tgptsmscls 23301 deg1sublt 25275 lgsqrlem1 26494 archiabllem1a 31445 archiabllem2a 31448 archiabllem2c 31449 ornglmulle 31504 orngrmulle 31505 lfl0 37079 eqlkr 37113 lkrlsp 37116 lclkrlem2m 39533 lcfrlem1 39556 hdmapinvlem3 39934 |
Copyright terms: Public domain | W3C validator |