![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubid | Structured version Visualization version GIF version |
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2733 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2733 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 18857 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
6 | 5 | anidms 568 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
7 | 6 | adantl 483 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
8 | grpsubid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
9 | 1, 2, 8, 3 | grprinv 18862 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋)) = 0 ) |
10 | 7, 9 | eqtrd 2773 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6535 (class class class)co 7396 Basecbs 17131 +gcplusg 17184 0gc0g 17372 Grpcgrp 18806 invgcminusg 18807 -gcsg 18808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-1st 7962 df-2nd 7963 df-0g 17374 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-grp 18809 df-minusg 18810 df-sbg 18811 |
This theorem is referenced by: grppncan 18901 grpnpncan0 18906 issubg4 19010 0nsg 19034 gexdvds 19436 abladdsub4 19662 ablsubaddsub 19665 ablpncan2 19666 ablpnpcan 19670 ablnncan 19671 telgsums 19844 dprdfeq0 19875 lmodsubid 20509 dmatsubcl 21969 mdetuni0 22092 chpmat0d 22305 chpdmatlem2 22310 tgpconncomp 23586 tgpt0 23592 tgptsmscls 23623 deg1sublt 25597 lgsqrlem1 26816 archiabllem1a 32308 archiabllem2a 32311 archiabllem2c 32312 ornglmulle 32385 orngrmulle 32386 lfl0 37841 eqlkr 37875 lkrlsp 37878 lclkrlem2m 40296 lcfrlem1 40319 hdmapinvlem3 40697 rngqiprngimfolem 46642 |
Copyright terms: Public domain | W3C validator |