MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid Structured version   Visualization version   GIF version

Theorem grpsubid 18921
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )

Proof of Theorem grpsubid
StepHypRef Expression
1 grpsubid.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
3 eqid 2729 . . . . 5 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . . 5 = (-g𝐺)
51, 2, 3, 4grpsubval 18882 . . . 4 ((𝑋𝐵𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
65anidms 566 . . 3 (𝑋𝐵 → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
76adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
8 grpsubid.o . . 3 0 = (0g𝐺)
91, 2, 8, 3grprinv 18887 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑋)) = 0 )
107, 9eqtrd 2764 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831  -gcsg 18832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835
This theorem is referenced by:  grppncan  18928  grpnpncan0  18933  issubg4  19042  0nsg  19066  gexdvds  19481  abladdsub4  19708  ablsubaddsub  19711  ablpncan2  19712  ablpnpcan  19716  ablnncan  19717  telgsums  19890  dprdfeq0  19921  ornglmulle  20770  orngrmulle  20771  lmodsubid  20843  rngqiprngimfolem  21215  rngqiprngfulem5  21240  dmatsubcl  22401  mdetuni0  22524  chpmat0d  22737  chpdmatlem2  22742  tgpconncomp  24016  tgpt0  24022  tgptsmscls  24053  deg1sublt  26031  lgsqrlem1  27273  archiabllem1a  33143  archiabllem2a  33146  archiabllem2c  33147  erlbr2d  33214  erler  33215  rloccring  33220  lfl0  39043  eqlkr  39077  lkrlsp  39080  lclkrlem2m  41498  lcfrlem1  41521  hdmapinvlem3  41899  aks6d1c2lem4  42100  aks6d1c5lem3  42110  aks5lem2  42160
  Copyright terms: Public domain W3C validator