| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubid | Structured version Visualization version GIF version | ||
| Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubid.o | ⊢ 0 = (0g‘𝐺) |
| grpsubid.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpsubval 18917 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
| 6 | 5 | anidms 566 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
| 8 | grpsubid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 9 | 1, 2, 8, 3 | grprinv 18922 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋)) = 0 ) |
| 10 | 7, 9 | eqtrd 2764 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 -gcsg 18867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 |
| This theorem is referenced by: grppncan 18963 grpnpncan0 18968 issubg4 19077 0nsg 19101 gexdvds 19514 abladdsub4 19741 ablsubaddsub 19744 ablpncan2 19745 ablpnpcan 19749 ablnncan 19750 telgsums 19923 dprdfeq0 19954 lmodsubid 20828 rngqiprngimfolem 21200 rngqiprngfulem5 21225 dmatsubcl 22385 mdetuni0 22508 chpmat0d 22721 chpdmatlem2 22726 tgpconncomp 24000 tgpt0 24006 tgptsmscls 24037 deg1sublt 26015 lgsqrlem1 27257 archiabllem1a 33145 archiabllem2a 33148 archiabllem2c 33149 erlbr2d 33215 erler 33216 rloccring 33221 ornglmulle 33283 orngrmulle 33284 lfl0 39058 eqlkr 39092 lkrlsp 39095 lclkrlem2m 41513 lcfrlem1 41536 hdmapinvlem3 41914 aks6d1c2lem4 42115 aks6d1c5lem3 42125 aks5lem2 42175 |
| Copyright terms: Public domain | W3C validator |