MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid Structured version   Visualization version   GIF version

Theorem grpsubid 18909
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubid ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )

Proof of Theorem grpsubid
StepHypRef Expression
1 grpsubid.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2732 . . . . 5 (+g𝐺) = (+g𝐺)
3 eqid 2732 . . . . 5 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . . 5 = (-g𝐺)
51, 2, 3, 4grpsubval 18872 . . . 4 ((𝑋𝐵𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
65anidms 567 . . 3 (𝑋𝐵 → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
76adantl 482 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (𝑋(+g𝐺)((invg𝐺)‘𝑋)))
8 grpsubid.o . . 3 0 = (0g𝐺)
91, 2, 8, 3grprinv 18877 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)((invg𝐺)‘𝑋)) = 0 )
107, 9eqtrd 2772 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7411  Basecbs 17146  +gcplusg 17199  0gc0g 17387  Grpcgrp 18821  invgcminusg 18822  -gcsg 18823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-0g 17389  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-grp 18824  df-minusg 18825  df-sbg 18826
This theorem is referenced by:  grppncan  18916  grpnpncan0  18921  issubg4  19027  0nsg  19051  gexdvds  19454  abladdsub4  19681  ablsubaddsub  19684  ablpncan2  19685  ablpnpcan  19689  ablnncan  19690  telgsums  19863  dprdfeq0  19894  lmodsubid  20537  dmatsubcl  22007  mdetuni0  22130  chpmat0d  22343  chpdmatlem2  22348  tgpconncomp  23624  tgpt0  23630  tgptsmscls  23661  deg1sublt  25635  lgsqrlem1  26856  archiabllem1a  32378  archiabllem2a  32381  archiabllem2c  32382  ornglmulle  32464  orngrmulle  32465  lfl0  38021  eqlkr  38055  lkrlsp  38058  lclkrlem2m  40476  lcfrlem1  40499  hdmapinvlem3  40877  rngqiprngimfolem  46854  rngqiprngfulem5  46879
  Copyright terms: Public domain W3C validator