![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubid | Structured version Visualization version GIF version |
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubid.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubid.o | ⊢ 0 = (0g‘𝐺) |
grpsubid.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2733 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2733 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubid.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 18870 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
6 | 5 | anidms 568 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
7 | 6 | adantl 483 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋))) |
8 | grpsubid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
9 | 1, 2, 8, 3 | grprinv 18875 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑋)) = 0 ) |
10 | 7, 9 | eqtrd 2773 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Grpcgrp 18819 invgcminusg 18820 -gcsg 18821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 |
This theorem is referenced by: grppncan 18914 grpnpncan0 18919 issubg4 19025 0nsg 19049 gexdvds 19452 abladdsub4 19679 ablsubaddsub 19682 ablpncan2 19683 ablpnpcan 19687 ablnncan 19688 telgsums 19861 dprdfeq0 19892 lmodsubid 20532 dmatsubcl 22000 mdetuni0 22123 chpmat0d 22336 chpdmatlem2 22341 tgpconncomp 23617 tgpt0 23623 tgptsmscls 23654 deg1sublt 25628 lgsqrlem1 26849 archiabllem1a 32337 archiabllem2a 32340 archiabllem2c 32341 ornglmulle 32423 orngrmulle 32424 lfl0 37935 eqlkr 37969 lkrlsp 37972 lclkrlem2m 40390 lcfrlem1 40413 hdmapinvlem3 40791 rngqiprngimfolem 46775 rngqiprngfulem5 46800 |
Copyright terms: Public domain | W3C validator |