![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvgf | Structured version Visualization version GIF version |
Description: Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvgf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvgf.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvgf | ⊢ (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvgf.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | 1 | nvgrp 30651 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
3 | nvgf.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 3, 1 | bafval 30638 | . . 3 ⊢ 𝑋 = ran 𝐺 |
5 | 4 | grpofo 30533 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
6 | fof 6836 | . 2 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → 𝐺:(𝑋 × 𝑋)⟶𝑋) | |
7 | 2, 5, 6 | 3syl 18 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 × cxp 5698 ⟶wf 6571 –onto→wfo 6573 ‘cfv 6575 GrpOpcgr 30523 NrmCVeccnv 30618 +𝑣 cpv 30619 BaseSetcba 30620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-1st 8032 df-2nd 8033 df-grpo 30527 df-ablo 30579 df-vc 30593 df-nv 30626 df-va 30629 df-ba 30630 df-sm 30631 df-0v 30632 df-nmcv 30634 |
This theorem is referenced by: vacn 30728 sspg 30762 hladdf 30933 |
Copyright terms: Public domain | W3C validator |