MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvgf Structured version   Visualization version   GIF version

Theorem nvgf 29268
Description: Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvgf.1 𝑋 = (BaseSet‘𝑈)
nvgf.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvgf (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem nvgf
StepHypRef Expression
1 nvgf.2 . . 3 𝐺 = ( +𝑣𝑈)
21nvgrp 29267 . 2 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvgf.1 . . . 4 𝑋 = (BaseSet‘𝑈)
43, 1bafval 29254 . . 3 𝑋 = ran 𝐺
54grpofo 29149 . 2 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
6 fof 6744 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
72, 5, 63syl 18 1 (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106   × cxp 5623  wf 6480  ontowfo 6482  cfv 6484  GrpOpcgr 29139  NrmCVeccnv 29234   +𝑣 cpv 29235  BaseSetcba 29236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-ov 7345  df-oprab 7346  df-1st 7904  df-2nd 7905  df-grpo 29143  df-ablo 29195  df-vc 29209  df-nv 29242  df-va 29245  df-ba 29246  df-sm 29247  df-0v 29248  df-nmcv 29250
This theorem is referenced by:  vacn  29344  sspg  29378  hladdf  29549
  Copyright terms: Public domain W3C validator