Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvgf | Structured version Visualization version GIF version |
Description: Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvgf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvgf.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvgf | ⊢ (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvgf.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | 1 | nvgrp 29267 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
3 | nvgf.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 3, 1 | bafval 29254 | . . 3 ⊢ 𝑋 = ran 𝐺 |
5 | 4 | grpofo 29149 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
6 | fof 6744 | . 2 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → 𝐺:(𝑋 × 𝑋)⟶𝑋) | |
7 | 2, 5, 6 | 3syl 18 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 × cxp 5623 ⟶wf 6480 –onto→wfo 6482 ‘cfv 6484 GrpOpcgr 29139 NrmCVeccnv 29234 +𝑣 cpv 29235 BaseSetcba 29236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-1st 7904 df-2nd 7905 df-grpo 29143 df-ablo 29195 df-vc 29209 df-nv 29242 df-va 29245 df-ba 29246 df-sm 29247 df-0v 29248 df-nmcv 29250 |
This theorem is referenced by: vacn 29344 sspg 29378 hladdf 29549 |
Copyright terms: Public domain | W3C validator |