MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvgf Structured version   Visualization version   GIF version

Theorem nvgf 30520
Description: Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvgf.1 𝑋 = (BaseSet‘𝑈)
nvgf.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvgf (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem nvgf
StepHypRef Expression
1 nvgf.2 . . 3 𝐺 = ( +𝑣𝑈)
21nvgrp 30519 . 2 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvgf.1 . . . 4 𝑋 = (BaseSet‘𝑈)
43, 1bafval 30506 . . 3 𝑋 = ran 𝐺
54grpofo 30401 . 2 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
6 fof 6754 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
72, 5, 63syl 18 1 (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   × cxp 5629  wf 6495  ontowfo 6497  cfv 6499  GrpOpcgr 30391  NrmCVeccnv 30486   +𝑣 cpv 30487  BaseSetcba 30488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-1st 7947  df-2nd 7948  df-grpo 30395  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-nmcv 30502
This theorem is referenced by:  vacn  30596  sspg  30630  hladdf  30801
  Copyright terms: Public domain W3C validator