Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpocl | Structured version Visualization version GIF version |
Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
grpocl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfo.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | grpofo 28861 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
3 | fof 6688 | . . 3 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → 𝐺:(𝑋 × 𝑋)⟶𝑋) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
5 | fovrn 7442 | . 2 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | |
6 | 4, 5 | syl3an1 1162 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 × cxp 5587 ran crn 5590 ⟶wf 6429 –onto→wfo 6431 (class class class)co 7275 GrpOpcgr 28851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 df-grpo 28855 |
This theorem is referenced by: grpoidinvlem2 28867 grpoidinvlem3 28868 grpoinvop 28895 grpodivf 28900 grpomuldivass 28903 ablo4 28912 nvgcl 28982 ablo4pnp 36038 ghomco 36049 rngogcl 36070 divrngcl 36115 iscringd 36156 |
Copyright terms: Public domain | W3C validator |