| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpocl | Structured version Visualization version GIF version | ||
| Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| grpocl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | grpofo 30471 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
| 3 | fof 6730 | . . 3 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → 𝐺:(𝑋 × 𝑋)⟶𝑋) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| 5 | fovcdm 7511 | . 2 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | |
| 6 | 4, 5 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 × cxp 5609 ran crn 5612 ⟶wf 6472 –onto→wfo 6474 (class class class)co 7341 GrpOpcgr 30461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-ov 7344 df-grpo 30465 |
| This theorem is referenced by: grpoidinvlem2 30477 grpoidinvlem3 30478 grpoinvop 30505 grpodivf 30510 grpomuldivass 30513 ablo4 30522 nvgcl 30592 ablo4pnp 37920 ghomco 37931 rngogcl 37952 divrngcl 37997 iscringd 38038 |
| Copyright terms: Public domain | W3C validator |