MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpocl Structured version   Visualization version   GIF version

Theorem grpocl 30462
Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpocl ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem grpocl
StepHypRef Expression
1 grpfo.1 . . . 4 𝑋 = ran 𝐺
21grpofo 30461 . . 3 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
3 fof 6740 . . 3 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
42, 3syl 17 . 2 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)⟶𝑋)
5 fovcdm 7523 . 2 ((𝐺:(𝑋 × 𝑋)⟶𝑋𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
64, 5syl3an1 1163 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   × cxp 5621  ran crn 5624  wf 6482  ontowfo 6484  (class class class)co 7353  GrpOpcgr 30451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7356  df-grpo 30455
This theorem is referenced by:  grpoidinvlem2  30467  grpoidinvlem3  30468  grpoinvop  30495  grpodivf  30500  grpomuldivass  30503  ablo4  30512  nvgcl  30582  ablo4pnp  37862  ghomco  37873  rngogcl  37894  divrngcl  37939  iscringd  37980
  Copyright terms: Public domain W3C validator