MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoid Structured version   Visualization version   GIF version

Theorem grpoid 28783
Description: Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoinveu.1 𝑋 = ran 𝐺
grpoinveu.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴))

Proof of Theorem grpoid
StepHypRef Expression
1 grpoinveu.1 . . . . . 6 𝑋 = ran 𝐺
2 grpoinveu.2 . . . . . 6 𝑈 = (GId‘𝐺)
31, 2grpoidcl 28777 . . . . 5 (𝐺 ∈ GrpOp → 𝑈𝑋)
41grporcan 28781 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑈𝑋𝐴𝑋)) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))
543exp2 1352 . . . . 5 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝑈𝑋 → (𝐴𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)))))
63, 5mpid 44 . . . 4 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝐴𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))))
76pm2.43d 53 . . 3 (𝐺 ∈ GrpOp → (𝐴𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)))
87imp 406 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))
91, 2grpolid 28779 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑈𝐺𝐴) = 𝐴)
109eqeq2d 2749 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ (𝐴𝐺𝐴) = 𝐴))
118, 10bitr3d 280 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ran crn 5581  cfv 6418  (class class class)co 7255  GrpOpcgr 28752  GIdcgi 28753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-riota 7212  df-ov 7258  df-grpo 28756  df-gid 28757
This theorem is referenced by:  hhssnv  29527  ghomidOLD  35974
  Copyright terms: Public domain W3C validator