| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoid | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpoinveu.1 | ⊢ 𝑋 = ran 𝐺 |
| grpoinveu.2 | ⊢ 𝑈 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| grpoid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoinveu.1 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpoinveu.2 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐺) | |
| 3 | 1, 2 | grpoidcl 30505 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
| 4 | 1 | grporcan 30509 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)) |
| 5 | 4 | 3exp2 1355 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → (𝑈 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))))) |
| 6 | 3, 5 | mpid 44 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)))) |
| 7 | 6 | pm2.43d 53 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)) |
| 9 | 1, 2 | grpolid 30507 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺𝐴) = 𝐴) |
| 10 | 9 | eqeq2d 2744 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ (𝐴𝐺𝐴) = 𝐴)) |
| 11 | 8, 10 | bitr3d 281 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ran crn 5622 ‘cfv 6489 (class class class)co 7355 GrpOpcgr 30480 GIdcgi 30481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-riota 7312 df-ov 7358 df-grpo 30484 df-gid 30485 |
| This theorem is referenced by: hhssnv 31255 ghomidOLD 37939 |
| Copyright terms: Public domain | W3C validator |