| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoid | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpoinveu.1 | ⊢ 𝑋 = ran 𝐺 |
| grpoinveu.2 | ⊢ 𝑈 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| grpoid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoinveu.1 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpoinveu.2 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐺) | |
| 3 | 1, 2 | grpoidcl 30441 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
| 4 | 1 | grporcan 30445 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)) |
| 5 | 4 | 3exp2 1355 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → (𝑈 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))))) |
| 6 | 3, 5 | mpid 44 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)))) |
| 7 | 6 | pm2.43d 53 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)) |
| 9 | 1, 2 | grpolid 30443 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺𝐴) = 𝐴) |
| 10 | 9 | eqeq2d 2746 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ (𝐴𝐺𝐴) = 𝐴)) |
| 11 | 8, 10 | bitr3d 281 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6530 (class class class)co 7403 GrpOpcgr 30416 GIdcgi 30417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fo 6536 df-fv 6538 df-riota 7360 df-ov 7406 df-grpo 30420 df-gid 30421 |
| This theorem is referenced by: hhssnv 31191 ghomidOLD 37859 |
| Copyright terms: Public domain | W3C validator |