MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoid Structured version   Visualization version   GIF version

Theorem grpoid 30552
Description: Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoinveu.1 𝑋 = ran 𝐺
grpoinveu.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴))

Proof of Theorem grpoid
StepHypRef Expression
1 grpoinveu.1 . . . . . 6 𝑋 = ran 𝐺
2 grpoinveu.2 . . . . . 6 𝑈 = (GId‘𝐺)
31, 2grpoidcl 30546 . . . . 5 (𝐺 ∈ GrpOp → 𝑈𝑋)
41grporcan 30550 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑈𝑋𝐴𝑋)) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))
543exp2 1354 . . . . 5 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝑈𝑋 → (𝐴𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)))))
63, 5mpid 44 . . . 4 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝐴𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))))
76pm2.43d 53 . . 3 (𝐺 ∈ GrpOp → (𝐴𝑋 → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈)))
87imp 406 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ 𝐴 = 𝑈))
91, 2grpolid 30548 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑈𝐺𝐴) = 𝐴)
109eqeq2d 2751 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝐴𝐺𝐴) = (𝑈𝐺𝐴) ↔ (𝐴𝐺𝐴) = 𝐴))
118, 10bitr3d 281 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ran crn 5701  cfv 6573  (class class class)co 7448  GrpOpcgr 30521  GIdcgi 30522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-ov 7451  df-grpo 30525  df-gid 30526
This theorem is referenced by:  hhssnv  31296  ghomidOLD  37849
  Copyright terms: Public domain W3C validator