![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ghomidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ghmid 18017 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ghomidOLD.1 | ⊢ 𝑈 = (GId‘𝐺) |
ghomidOLD.2 | ⊢ 𝑇 = (GId‘𝐻) |
Ref | Expression |
---|---|
ghomidOLD | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . . . 7 ⊢ ran 𝐺 = ran 𝐺 | |
2 | ghomidOLD.1 | . . . . . . 7 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidcl 27924 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺) |
4 | 3 | 3ad2ant1 1169 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺) |
5 | 4, 4 | jca 509 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) |
6 | 1 | ghomlinOLD 34229 | . . . 4 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
7 | 5, 6 | mpdan 680 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
8 | 1, 2 | grpolid 27926 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈) |
9 | 3, 8 | mpdan 680 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈) |
10 | 9 | fveq2d 6437 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
11 | 10 | 3ad2ant1 1169 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
12 | 7, 11 | eqtrd 2861 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)) |
13 | eqid 2825 | . . . . . . 7 ⊢ ran 𝐻 = ran 𝐻 | |
14 | 1, 13 | elghomOLD 34228 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
15 | 14 | biimp3a 1599 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
16 | 15 | simpld 490 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻) |
17 | 16, 4 | ffvelrnd 6609 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) ∈ ran 𝐻) |
18 | ghomidOLD.2 | . . . . . 6 ⊢ 𝑇 = (GId‘𝐻) | |
19 | 13, 18 | grpoid 27930 | . . . . 5 ⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝑈) ∈ ran 𝐻) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
20 | 19 | ex 403 | . . . 4 ⊢ (𝐻 ∈ GrpOp → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
21 | 20 | 3ad2ant2 1170 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
22 | 17, 21 | mpd 15 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
23 | 12, 22 | mpbird 249 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3117 ran crn 5343 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 GrpOpcgr 27899 GIdcgi 27900 GrpOpHom cghomOLD 34224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-grpo 27903 df-gid 27904 df-ghomOLD 34225 |
This theorem is referenced by: grpokerinj 34234 rngohom0 34313 |
Copyright terms: Public domain | W3C validator |