Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomidOLD Structured version   Visualization version   GIF version

Theorem ghomidOLD 37883
Description: Obsolete version of ghmid 19154 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ghomidOLD.1 𝑈 = (GId‘𝐺)
ghomidOLD.2 𝑇 = (GId‘𝐻)
Assertion
Ref Expression
ghomidOLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)

Proof of Theorem ghomidOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 ran 𝐺 = ran 𝐺
2 ghomidOLD.1 . . . . . . 7 𝑈 = (GId‘𝐺)
31, 2grpoidcl 30443 . . . . . 6 (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺)
433ad2ant1 1133 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺)
54, 4jca 511 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺))
61ghomlinOLD 37882 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
75, 6mpdan 687 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
81, 2grpolid 30445 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈)
93, 8mpdan 687 . . . . 5 (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈)
109fveq2d 6862 . . . 4 (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
11103ad2ant1 1133 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
127, 11eqtrd 2764 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))
13 eqid 2729 . . . . . . 7 ran 𝐻 = ran 𝐻
141, 13elghomOLD 37881 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1514biimp3a 1471 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
1615simpld 494 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻)
1716, 4ffvelcdmd 7057 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) ∈ ran 𝐻)
18 ghomidOLD.2 . . . . . 6 𝑇 = (GId‘𝐻)
1913, 18grpoid 30449 . . . . 5 ((𝐻 ∈ GrpOp ∧ (𝐹𝑈) ∈ ran 𝐻) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2019ex 412 . . . 4 (𝐻 ∈ GrpOp → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
21203ad2ant2 1134 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
2217, 21mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2312, 22mpbird 257 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  GrpOpcgr 30418  GIdcgi 30419   GrpOpHom cghomOLD 37877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-grpo 30422  df-gid 30423  df-ghomOLD 37878
This theorem is referenced by:  grpokerinj  37887  rngohom0  37966
  Copyright terms: Public domain W3C validator