Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ghomidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ghmid 18838 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ghomidOLD.1 | ⊢ 𝑈 = (GId‘𝐺) |
ghomidOLD.2 | ⊢ 𝑇 = (GId‘𝐻) |
Ref | Expression |
---|---|
ghomidOLD | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . 7 ⊢ ran 𝐺 = ran 𝐺 | |
2 | ghomidOLD.1 | . . . . . . 7 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidcl 28872 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺) |
4 | 3 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺) |
5 | 4, 4 | jca 512 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) |
6 | 1 | ghomlinOLD 36042 | . . . 4 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
7 | 5, 6 | mpdan 684 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
8 | 1, 2 | grpolid 28874 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈) |
9 | 3, 8 | mpdan 684 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈) |
10 | 9 | fveq2d 6775 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
11 | 10 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
12 | 7, 11 | eqtrd 2780 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)) |
13 | eqid 2740 | . . . . . . 7 ⊢ ran 𝐻 = ran 𝐻 | |
14 | 1, 13 | elghomOLD 36041 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
15 | 14 | biimp3a 1468 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
16 | 15 | simpld 495 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻) |
17 | 16, 4 | ffvelrnd 6959 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) ∈ ran 𝐻) |
18 | ghomidOLD.2 | . . . . . 6 ⊢ 𝑇 = (GId‘𝐻) | |
19 | 13, 18 | grpoid 28878 | . . . . 5 ⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝑈) ∈ ran 𝐻) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
20 | 19 | ex 413 | . . . 4 ⊢ (𝐻 ∈ GrpOp → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
21 | 20 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
22 | 17, 21 | mpd 15 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
23 | 12, 22 | mpbird 256 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ran crn 5591 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 GrpOpcgr 28847 GIdcgi 28848 GrpOpHom cghomOLD 36037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-grpo 28851 df-gid 28852 df-ghomOLD 36038 |
This theorem is referenced by: grpokerinj 36047 rngohom0 36126 |
Copyright terms: Public domain | W3C validator |