Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomidOLD Structured version   Visualization version   GIF version

Theorem ghomidOLD 37270
Description: Obsolete version of ghmid 19147 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ghomidOLD.1 π‘ˆ = (GIdβ€˜πΊ)
ghomidOLD.2 𝑇 = (GIdβ€˜π»)
Assertion
Ref Expression
ghomidOLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ (πΉβ€˜π‘ˆ) = 𝑇)

Proof of Theorem ghomidOLD
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . . . 7 ran 𝐺 = ran 𝐺
2 ghomidOLD.1 . . . . . . 7 π‘ˆ = (GIdβ€˜πΊ)
31, 2grpoidcl 30276 . . . . . 6 (𝐺 ∈ GrpOp β†’ π‘ˆ ∈ ran 𝐺)
433ad2ant1 1130 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ π‘ˆ ∈ ran 𝐺)
54, 4jca 511 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ (π‘ˆ ∈ ran 𝐺 ∧ π‘ˆ ∈ ran 𝐺))
61ghomlinOLD 37269 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (π‘ˆ ∈ ran 𝐺 ∧ π‘ˆ ∈ ran 𝐺)) β†’ ((πΉβ€˜π‘ˆ)𝐻(πΉβ€˜π‘ˆ)) = (πΉβ€˜(π‘ˆπΊπ‘ˆ)))
75, 6mpdan 684 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ ((πΉβ€˜π‘ˆ)𝐻(πΉβ€˜π‘ˆ)) = (πΉβ€˜(π‘ˆπΊπ‘ˆ)))
81, 2grpolid 30278 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘ˆ ∈ ran 𝐺) β†’ (π‘ˆπΊπ‘ˆ) = π‘ˆ)
93, 8mpdan 684 . . . . 5 (𝐺 ∈ GrpOp β†’ (π‘ˆπΊπ‘ˆ) = π‘ˆ)
109fveq2d 6889 . . . 4 (𝐺 ∈ GrpOp β†’ (πΉβ€˜(π‘ˆπΊπ‘ˆ)) = (πΉβ€˜π‘ˆ))
11103ad2ant1 1130 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ (πΉβ€˜(π‘ˆπΊπ‘ˆ)) = (πΉβ€˜π‘ˆ))
127, 11eqtrd 2766 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ ((πΉβ€˜π‘ˆ)𝐻(πΉβ€˜π‘ˆ)) = (πΉβ€˜π‘ˆ))
13 eqid 2726 . . . . . . 7 ran 𝐻 = ran 𝐻
141, 13elghomOLD 37268 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) β†’ (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟢ran 𝐻 ∧ βˆ€π‘₯ ∈ ran πΊβˆ€π‘¦ ∈ ran 𝐺((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))))
1514biimp3a 1465 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ (𝐹:ran 𝐺⟢ran 𝐻 ∧ βˆ€π‘₯ ∈ ran πΊβˆ€π‘¦ ∈ ran 𝐺((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦))))
1615simpld 494 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ 𝐹:ran 𝐺⟢ran 𝐻)
1716, 4ffvelcdmd 7081 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ (πΉβ€˜π‘ˆ) ∈ ran 𝐻)
18 ghomidOLD.2 . . . . . 6 𝑇 = (GIdβ€˜π»)
1913, 18grpoid 30282 . . . . 5 ((𝐻 ∈ GrpOp ∧ (πΉβ€˜π‘ˆ) ∈ ran 𝐻) β†’ ((πΉβ€˜π‘ˆ) = 𝑇 ↔ ((πΉβ€˜π‘ˆ)𝐻(πΉβ€˜π‘ˆ)) = (πΉβ€˜π‘ˆ)))
2019ex 412 . . . 4 (𝐻 ∈ GrpOp β†’ ((πΉβ€˜π‘ˆ) ∈ ran 𝐻 β†’ ((πΉβ€˜π‘ˆ) = 𝑇 ↔ ((πΉβ€˜π‘ˆ)𝐻(πΉβ€˜π‘ˆ)) = (πΉβ€˜π‘ˆ))))
21203ad2ant2 1131 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ ((πΉβ€˜π‘ˆ) ∈ ran 𝐻 β†’ ((πΉβ€˜π‘ˆ) = 𝑇 ↔ ((πΉβ€˜π‘ˆ)𝐻(πΉβ€˜π‘ˆ)) = (πΉβ€˜π‘ˆ))))
2217, 21mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ ((πΉβ€˜π‘ˆ) = 𝑇 ↔ ((πΉβ€˜π‘ˆ)𝐻(πΉβ€˜π‘ˆ)) = (πΉβ€˜π‘ˆ)))
2312, 22mpbird 257 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ (πΉβ€˜π‘ˆ) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  ran crn 5670  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405  GrpOpcgr 30251  GIdcgi 30252   GrpOpHom cghomOLD 37264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-grpo 30255  df-gid 30256  df-ghomOLD 37265
This theorem is referenced by:  grpokerinj  37274  rngohom0  37353
  Copyright terms: Public domain W3C validator