Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomidOLD Structured version   Visualization version   GIF version

Theorem ghomidOLD 37890
Description: Obsolete version of ghmid 19262 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ghomidOLD.1 𝑈 = (GId‘𝐺)
ghomidOLD.2 𝑇 = (GId‘𝐻)
Assertion
Ref Expression
ghomidOLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)

Proof of Theorem ghomidOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . . 7 ran 𝐺 = ran 𝐺
2 ghomidOLD.1 . . . . . . 7 𝑈 = (GId‘𝐺)
31, 2grpoidcl 30559 . . . . . 6 (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺)
433ad2ant1 1134 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺)
54, 4jca 511 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺))
61ghomlinOLD 37889 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
75, 6mpdan 687 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
81, 2grpolid 30561 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈)
93, 8mpdan 687 . . . . 5 (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈)
109fveq2d 6918 . . . 4 (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
11103ad2ant1 1134 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
127, 11eqtrd 2777 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))
13 eqid 2737 . . . . . . 7 ran 𝐻 = ran 𝐻
141, 13elghomOLD 37888 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1514biimp3a 1470 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
1615simpld 494 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻)
1716, 4ffvelcdmd 7112 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) ∈ ran 𝐻)
18 ghomidOLD.2 . . . . . 6 𝑇 = (GId‘𝐻)
1913, 18grpoid 30565 . . . . 5 ((𝐻 ∈ GrpOp ∧ (𝐹𝑈) ∈ ran 𝐻) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2019ex 412 . . . 4 (𝐻 ∈ GrpOp → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
21203ad2ant2 1135 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
2217, 21mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2312, 22mpbird 257 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  ran crn 5694  wf 6565  cfv 6569  (class class class)co 7438  GrpOpcgr 30534  GIdcgi 30535   GrpOpHom cghomOLD 37884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-grpo 30538  df-gid 30539  df-ghomOLD 37885
This theorem is referenced by:  grpokerinj  37894  rngohom0  37973
  Copyright terms: Public domain W3C validator