Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomidOLD Structured version   Visualization version   GIF version

Theorem ghomidOLD 35169
Description: Obsolete version of ghmid 18366 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ghomidOLD.1 𝑈 = (GId‘𝐺)
ghomidOLD.2 𝑇 = (GId‘𝐻)
Assertion
Ref Expression
ghomidOLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)

Proof of Theorem ghomidOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . . . 7 ran 𝐺 = ran 𝐺
2 ghomidOLD.1 . . . . . . 7 𝑈 = (GId‘𝐺)
31, 2grpoidcl 28293 . . . . . 6 (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺)
433ad2ant1 1129 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺)
54, 4jca 514 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺))
61ghomlinOLD 35168 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
75, 6mpdan 685 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
81, 2grpolid 28295 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈)
93, 8mpdan 685 . . . . 5 (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈)
109fveq2d 6676 . . . 4 (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
11103ad2ant1 1129 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
127, 11eqtrd 2858 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))
13 eqid 2823 . . . . . . 7 ran 𝐻 = ran 𝐻
141, 13elghomOLD 35167 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1514biimp3a 1465 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
1615simpld 497 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻)
1716, 4ffvelrnd 6854 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) ∈ ran 𝐻)
18 ghomidOLD.2 . . . . . 6 𝑇 = (GId‘𝐻)
1913, 18grpoid 28299 . . . . 5 ((𝐻 ∈ GrpOp ∧ (𝐹𝑈) ∈ ran 𝐻) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2019ex 415 . . . 4 (𝐻 ∈ GrpOp → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
21203ad2ant2 1130 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
2217, 21mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2312, 22mpbird 259 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  GrpOpcgr 28268  GIdcgi 28269   GrpOpHom cghomOLD 35163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-grpo 28272  df-gid 28273  df-ghomOLD 35164
This theorem is referenced by:  grpokerinj  35173  rngohom0  35252
  Copyright terms: Public domain W3C validator