Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ghomidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ghmid 18821 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ghomidOLD.1 | ⊢ 𝑈 = (GId‘𝐺) |
ghomidOLD.2 | ⊢ 𝑇 = (GId‘𝐻) |
Ref | Expression |
---|---|
ghomidOLD | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . . . 7 ⊢ ran 𝐺 = ran 𝐺 | |
2 | ghomidOLD.1 | . . . . . . 7 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidcl 28855 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺) |
4 | 3 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺) |
5 | 4, 4 | jca 511 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) |
6 | 1 | ghomlinOLD 36025 | . . . 4 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺 ∧ 𝑈 ∈ ran 𝐺)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
7 | 5, 6 | mpdan 683 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘(𝑈𝐺𝑈))) |
8 | 1, 2 | grpolid 28857 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈) |
9 | 3, 8 | mpdan 683 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈) |
10 | 9 | fveq2d 6772 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
11 | 10 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹‘𝑈)) |
12 | 7, 11 | eqtrd 2779 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)) |
13 | eqid 2739 | . . . . . . 7 ⊢ ran 𝐻 = ran 𝐻 | |
14 | 1, 13 | elghomOLD 36024 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
15 | 14 | biimp3a 1467 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
16 | 15 | simpld 494 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻) |
17 | 16, 4 | ffvelrnd 6956 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) ∈ ran 𝐻) |
18 | ghomidOLD.2 | . . . . . 6 ⊢ 𝑇 = (GId‘𝐻) | |
19 | 13, 18 | grpoid 28861 | . . . . 5 ⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝑈) ∈ ran 𝐻) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
20 | 19 | ex 412 | . . . 4 ⊢ (𝐻 ∈ GrpOp → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
21 | 20 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) ∈ ran 𝐻 → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈)))) |
22 | 17, 21 | mpd 15 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹‘𝑈) = 𝑇 ↔ ((𝐹‘𝑈)𝐻(𝐹‘𝑈)) = (𝐹‘𝑈))) |
23 | 12, 22 | mpbird 256 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ran crn 5589 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 GrpOpcgr 28830 GIdcgi 28831 GrpOpHom cghomOLD 36020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-grpo 28834 df-gid 28835 df-ghomOLD 36021 |
This theorem is referenced by: grpokerinj 36030 rngohom0 36109 |
Copyright terms: Public domain | W3C validator |