Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomidOLD Structured version   Visualization version   GIF version

Theorem ghomidOLD 36091
Description: Obsolete version of ghmid 18885 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ghomidOLD.1 𝑈 = (GId‘𝐺)
ghomidOLD.2 𝑇 = (GId‘𝐻)
Assertion
Ref Expression
ghomidOLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)

Proof of Theorem ghomidOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 ran 𝐺 = ran 𝐺
2 ghomidOLD.1 . . . . . . 7 𝑈 = (GId‘𝐺)
31, 2grpoidcl 28921 . . . . . 6 (𝐺 ∈ GrpOp → 𝑈 ∈ ran 𝐺)
433ad2ant1 1133 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑈 ∈ ran 𝐺)
54, 4jca 513 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺))
61ghomlinOLD 36090 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑈 ∈ ran 𝐺𝑈 ∈ ran 𝐺)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
75, 6mpdan 685 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹‘(𝑈𝐺𝑈)))
81, 2grpolid 28923 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ ran 𝐺) → (𝑈𝐺𝑈) = 𝑈)
93, 8mpdan 685 . . . . 5 (𝐺 ∈ GrpOp → (𝑈𝐺𝑈) = 𝑈)
109fveq2d 6808 . . . 4 (𝐺 ∈ GrpOp → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
11103ad2ant1 1133 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘(𝑈𝐺𝑈)) = (𝐹𝑈))
127, 11eqtrd 2776 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))
13 eqid 2736 . . . . . . 7 ran 𝐻 = ran 𝐻
141, 13elghomOLD 36089 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1514biimp3a 1469 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
1615simpld 496 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:ran 𝐺⟶ran 𝐻)
1716, 4ffvelcdmd 6994 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) ∈ ran 𝐻)
18 ghomidOLD.2 . . . . . 6 𝑇 = (GId‘𝐻)
1913, 18grpoid 28927 . . . . 5 ((𝐻 ∈ GrpOp ∧ (𝐹𝑈) ∈ ran 𝐻) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2019ex 414 . . . 4 (𝐻 ∈ GrpOp → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
21203ad2ant2 1134 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) ∈ ran 𝐻 → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈))))
2217, 21mpd 15 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹𝑈) = 𝑇 ↔ ((𝐹𝑈)𝐻(𝐹𝑈)) = (𝐹𝑈)))
2312, 22mpbird 257 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  ran crn 5601  wf 6454  cfv 6458  (class class class)co 7307  GrpOpcgr 28896  GIdcgi 28897   GrpOpHom cghomOLD 36085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-grpo 28900  df-gid 28901  df-ghomOLD 36086
This theorem is referenced by:  grpokerinj  36095  rngohom0  36174
  Copyright terms: Public domain W3C validator