![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlne1 | Structured version Visualization version GIF version |
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ishlg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
hlcomd.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
Ref | Expression |
---|---|
hlne1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcomd.1 | . . 3 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishlg.k | . . . 4 ⊢ 𝐾 = (hlG‘𝐺) | |
5 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | ishlg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
9 | 2, 3, 4, 5, 6, 7, 8 | ishlg 25953 | . . 3 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) |
10 | 1, 9 | mpbid 224 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))) |
11 | 10 | simp1d 1133 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 Itvcitv 25787 hlGchlg 25951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-hlg 25952 |
This theorem is referenced by: hleqnid 25959 hltr 25961 opphllem4 26098 opphl 26102 cgrane1 26160 cgrane2 26161 cgrahl 26175 sacgr 26179 sacgrOLD 26180 acopy 26182 acopyeu 26183 inaghl 26194 |
Copyright terms: Public domain | W3C validator |