Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlne1 | Structured version Visualization version GIF version |
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ishlg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
hlcomd.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
Ref | Expression |
---|---|
hlne1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcomd.1 | . . 3 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishlg.k | . . . 4 ⊢ 𝐾 = (hlG‘𝐺) | |
5 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | ishlg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
9 | 2, 3, 4, 5, 6, 7, 8 | ishlg 27321 | . . 3 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) |
10 | 1, 9 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))) |
11 | 10 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 class class class wbr 5103 ‘cfv 6491 (class class class)co 7349 Basecbs 17017 Itvcitv 27152 hlGchlg 27319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5528 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-ov 7352 df-hlg 27320 |
This theorem is referenced by: hleqnid 27327 hltr 27329 opphllem4 27469 opphl 27473 cgrane1 27531 cgrane2 27532 cgrahl 27546 sacgr 27550 acopy 27552 acopyeu 27553 inaghl 27564 |
Copyright terms: Public domain | W3C validator |