Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlne1 | Structured version Visualization version GIF version |
Description: The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ishlg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
hlcomd.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
Ref | Expression |
---|---|
hlne1 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcomd.1 | . . 3 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
2 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishlg.k | . . . 4 ⊢ 𝐾 = (hlG‘𝐺) | |
5 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | ishlg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
9 | 2, 3, 4, 5, 6, 7, 8 | ishlg 27096 | . . 3 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) |
10 | 1, 9 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))) |
11 | 10 | simp1d 1141 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5086 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 Itvcitv 26927 hlGchlg 27094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-hlg 27095 |
This theorem is referenced by: hleqnid 27102 hltr 27104 opphllem4 27244 opphl 27248 cgrane1 27306 cgrane2 27307 cgrahl 27321 sacgr 27325 acopy 27327 acopyeu 27328 inaghl 27339 |
Copyright terms: Public domain | W3C validator |