HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpari Structured version   Visualization version   GIF version

Theorem normpari 28923
Description: Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar.1 𝐴 ∈ ℋ
normpar.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normpari (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2)))

Proof of Theorem normpari
StepHypRef Expression
1 normpar.1 . . . . 5 𝐴 ∈ ℋ
2 normpar.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubcli 28790 . . . 4 (𝐴 𝐵) ∈ ℋ
43normsqi 28901 . . 3 ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵))
51, 2hvaddcli 28787 . . . 4 (𝐴 + 𝐵) ∈ ℋ
65normsqi 28901 . . 3 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
74, 6oveq12i 7160 . 2 (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
81normsqi 28901 . . . . . 6 ((norm𝐴)↑2) = (𝐴 ·ih 𝐴)
98oveq2i 7159 . . . . 5 (2 · ((norm𝐴)↑2)) = (2 · (𝐴 ·ih 𝐴))
101, 1hicli 28850 . . . . . 6 (𝐴 ·ih 𝐴) ∈ ℂ
11102timesi 11767 . . . . 5 (2 · (𝐴 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴))
129, 11eqtri 2842 . . . 4 (2 · ((norm𝐴)↑2)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴))
132normsqi 28901 . . . . . 6 ((norm𝐵)↑2) = (𝐵 ·ih 𝐵)
1413oveq2i 7159 . . . . 5 (2 · ((norm𝐵)↑2)) = (2 · (𝐵 ·ih 𝐵))
152, 2hicli 28850 . . . . . 6 (𝐵 ·ih 𝐵) ∈ ℂ
16152timesi 11767 . . . . 5 (2 · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))
1714, 16eqtri 2842 . . . 4 (2 · ((norm𝐵)↑2)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))
1812, 17oveq12i 7160 . . 3 ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
191, 2, 1, 2normlem9 28887 . . . . . 6 ((𝐴 𝐵) ·ih (𝐴 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2010, 15addcli 10639 . . . . . . 7 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ
211, 2hicli 28850 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
222, 1hicli 28850 . . . . . . . 8 (𝐵 ·ih 𝐴) ∈ ℂ
2321, 22addcli 10639 . . . . . . 7 ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈ ℂ
2420, 23negsubi 10956 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2519, 24eqtr4i 2845 . . . . 5 ((𝐴 𝐵) ·ih (𝐴 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
261, 2, 1, 2normlem8 28886 . . . . 5 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2725, 26oveq12i 7160 . . . 4 (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))))
2823negcli 10946 . . . . 5 -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈ ℂ
2920, 28, 20, 23add42i 10857 . . . 4 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))))
3023negidi 10947 . . . . . 6 (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = 0
3130oveq2i 7159 . . . . 5 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0)
3220, 20addcli 10639 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) ∈ ℂ
3332addid1i 10819 . . . . 5 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)))
3410, 15, 10, 15add4i 10856 . . . . 5 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3531, 33, 343eqtri 2846 . . . 4 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3627, 29, 353eqtri 2846 . . 3 (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3718, 36eqtr4i 2845 . 2 ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
387, 37eqtr4i 2845 1 (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  wcel 2107  cfv 6348  (class class class)co 7148  0cc0 10529   + caddc 10532   · cmul 10534  cmin 10862  -cneg 10863  2c2 11684  cexp 13421  chba 28688   + cva 28689   ·ih csp 28691  normcno 28692   cmv 28694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-hfvadd 28769  ax-hv0cl 28772  ax-hfvmul 28774  ax-hvmul0 28779  ax-hfi 28848  ax-his1 28851  ax-his2 28852  ax-his3 28853  ax-his4 28854
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-hnorm 28737  df-hvsub 28740
This theorem is referenced by:  normpar  28924  normpar2i  28925
  Copyright terms: Public domain W3C validator