Proof of Theorem normpari
Step | Hyp | Ref
| Expression |
1 | | normpar.1 |
. . . . 5
⊢ 𝐴 ∈ ℋ |
2 | | normpar.2 |
. . . . 5
⊢ 𝐵 ∈ ℋ |
3 | 1, 2 | hvsubcli 28916 |
. . . 4
⊢ (𝐴 −ℎ
𝐵) ∈
ℋ |
4 | 3 | normsqi 29027 |
. . 3
⊢
((normℎ‘(𝐴 −ℎ 𝐵))↑2) = ((𝐴 −ℎ 𝐵)
·ih (𝐴 −ℎ 𝐵)) |
5 | 1, 2 | hvaddcli 28913 |
. . . 4
⊢ (𝐴 +ℎ 𝐵) ∈
ℋ |
6 | 5 | normsqi 29027 |
. . 3
⊢
((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
7 | 4, 6 | oveq12i 7168 |
. 2
⊢
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = (((𝐴 −ℎ 𝐵)
·ih (𝐴 −ℎ 𝐵)) + ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵))) |
8 | 1 | normsqi 29027 |
. . . . . 6
⊢
((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴) |
9 | 8 | oveq2i 7167 |
. . . . 5
⊢ (2
· ((normℎ‘𝐴)↑2)) = (2 · (𝐴 ·ih 𝐴)) |
10 | 1, 1 | hicli 28976 |
. . . . . 6
⊢ (𝐴
·ih 𝐴) ∈ ℂ |
11 | 10 | 2timesi 11825 |
. . . . 5
⊢ (2
· (𝐴
·ih 𝐴)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) |
12 | 9, 11 | eqtri 2781 |
. . . 4
⊢ (2
· ((normℎ‘𝐴)↑2)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) |
13 | 2 | normsqi 29027 |
. . . . . 6
⊢
((normℎ‘𝐵)↑2) = (𝐵 ·ih 𝐵) |
14 | 13 | oveq2i 7167 |
. . . . 5
⊢ (2
· ((normℎ‘𝐵)↑2)) = (2 · (𝐵 ·ih 𝐵)) |
15 | 2, 2 | hicli 28976 |
. . . . . 6
⊢ (𝐵
·ih 𝐵) ∈ ℂ |
16 | 15 | 2timesi 11825 |
. . . . 5
⊢ (2
· (𝐵
·ih 𝐵)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)) |
17 | 14, 16 | eqtri 2781 |
. . . 4
⊢ (2
· ((normℎ‘𝐵)↑2)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)) |
18 | 12, 17 | oveq12i 7168 |
. . 3
⊢ ((2
· ((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))) |
19 | 1, 2, 1, 2 | normlem9 29013 |
. . . . . 6
⊢ ((𝐴 −ℎ
𝐵)
·ih (𝐴 −ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
20 | 10, 15 | addcli 10698 |
. . . . . . 7
⊢ ((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈
ℂ |
21 | 1, 2 | hicli 28976 |
. . . . . . . 8
⊢ (𝐴
·ih 𝐵) ∈ ℂ |
22 | 2, 1 | hicli 28976 |
. . . . . . . 8
⊢ (𝐵
·ih 𝐴) ∈ ℂ |
23 | 21, 22 | addcli 10698 |
. . . . . . 7
⊢ ((𝐴
·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈
ℂ |
24 | 20, 23 | negsubi 11015 |
. . . . . 6
⊢ (((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
25 | 19, 24 | eqtr4i 2784 |
. . . . 5
⊢ ((𝐴 −ℎ
𝐵)
·ih (𝐴 −ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
26 | 1, 2, 1, 2 | normlem8 29012 |
. . . . 5
⊢ ((𝐴 +ℎ 𝐵)
·ih (𝐴 +ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
27 | 25, 26 | oveq12i 7168 |
. . . 4
⊢ (((𝐴 −ℎ
𝐵)
·ih (𝐴 −ℎ 𝐵)) + ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) |
28 | 23 | negcli 11005 |
. . . . 5
⊢ -((𝐴
·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈
ℂ |
29 | 20, 28, 20, 23 | add42i 10916 |
. . . 4
⊢ ((((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) |
30 | 23 | negidi 11006 |
. . . . . 6
⊢ (((𝐴
·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = 0 |
31 | 30 | oveq2i 7167 |
. . . . 5
⊢ ((((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0) |
32 | 20, 20 | addcli 10698 |
. . . . . 6
⊢ (((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) ∈
ℂ |
33 | 32 | addid1i 10878 |
. . . . 5
⊢ ((((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
34 | 10, 15, 10, 15 | add4i 10915 |
. . . . 5
⊢ (((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))) |
35 | 31, 33, 34 | 3eqtri 2785 |
. . . 4
⊢ ((((𝐴
·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))) |
36 | 27, 29, 35 | 3eqtri 2785 |
. . 3
⊢ (((𝐴 −ℎ
𝐵)
·ih (𝐴 −ℎ 𝐵)) + ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))) |
37 | 18, 36 | eqtr4i 2784 |
. 2
⊢ ((2
· ((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) = (((𝐴 −ℎ 𝐵)
·ih (𝐴 −ℎ 𝐵)) + ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵))) |
38 | 7, 37 | eqtr4i 2784 |
1
⊢
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) |