HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpari Structured version   Visualization version   GIF version

Theorem normpari 30385
Description: Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar.1 𝐴 ∈ ℋ
normpar.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normpari (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2)))

Proof of Theorem normpari
StepHypRef Expression
1 normpar.1 . . . . 5 𝐴 ∈ ℋ
2 normpar.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubcli 30252 . . . 4 (𝐴 𝐵) ∈ ℋ
43normsqi 30363 . . 3 ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵))
51, 2hvaddcli 30249 . . . 4 (𝐴 + 𝐵) ∈ ℋ
65normsqi 30363 . . 3 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
74, 6oveq12i 7416 . 2 (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
81normsqi 30363 . . . . . 6 ((norm𝐴)↑2) = (𝐴 ·ih 𝐴)
98oveq2i 7415 . . . . 5 (2 · ((norm𝐴)↑2)) = (2 · (𝐴 ·ih 𝐴))
101, 1hicli 30312 . . . . . 6 (𝐴 ·ih 𝐴) ∈ ℂ
11102timesi 12346 . . . . 5 (2 · (𝐴 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴))
129, 11eqtri 2761 . . . 4 (2 · ((norm𝐴)↑2)) = ((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴))
132normsqi 30363 . . . . . 6 ((norm𝐵)↑2) = (𝐵 ·ih 𝐵)
1413oveq2i 7415 . . . . 5 (2 · ((norm𝐵)↑2)) = (2 · (𝐵 ·ih 𝐵))
152, 2hicli 30312 . . . . . 6 (𝐵 ·ih 𝐵) ∈ ℂ
16152timesi 12346 . . . . 5 (2 · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))
1714, 16eqtri 2761 . . . 4 (2 · ((norm𝐵)↑2)) = ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵))
1812, 17oveq12i 7416 . . 3 ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
191, 2, 1, 2normlem9 30349 . . . . . 6 ((𝐴 𝐵) ·ih (𝐴 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2010, 15addcli 11216 . . . . . . 7 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ
211, 2hicli 30312 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
222, 1hicli 30312 . . . . . . . 8 (𝐵 ·ih 𝐴) ∈ ℂ
2321, 22addcli 11216 . . . . . . 7 ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈ ℂ
2420, 23negsubi 11534 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2519, 24eqtr4i 2764 . . . . 5 ((𝐴 𝐵) ·ih (𝐴 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
261, 2, 1, 2normlem8 30348 . . . . 5 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
2725, 26oveq12i 7416 . . . 4 (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))))
2823negcli 11524 . . . . 5 -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) ∈ ℂ
2920, 28, 20, 23add42i 11435 . . . 4 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) + (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))))
3023negidi 11525 . . . . . 6 (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = 0
3130oveq2i 7415 . . . . 5 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0)
3220, 20addcli 11216 . . . . . 6 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) ∈ ℂ
3332addridi 11397 . . . . 5 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + 0) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)))
3410, 15, 10, 15add4i 11434 . . . . 5 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3531, 33, 343eqtri 2765 . . . 4 ((((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) + (((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) + -((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3627, 29, 353eqtri 2765 . . 3 (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))) = (((𝐴 ·ih 𝐴) + (𝐴 ·ih 𝐴)) + ((𝐵 ·ih 𝐵) + (𝐵 ·ih 𝐵)))
3718, 36eqtr4i 2764 . 2 ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) + ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)))
387, 37eqtr4i 2764 1 (((norm‘(𝐴 𝐵))↑2) + ((norm‘(𝐴 + 𝐵))↑2)) = ((2 · ((norm𝐴)↑2)) + (2 · ((norm𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  cfv 6540  (class class class)co 7404  0cc0 11106   + caddc 11109   · cmul 11111  cmin 11440  -cneg 11441  2c2 12263  cexp 14023  chba 30150   + cva 30151   ·ih csp 30153  normcno 30154   cmv 30156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-hfvadd 30231  ax-hv0cl 30234  ax-hfvmul 30236  ax-hvmul0 30241  ax-hfi 30310  ax-his1 30313  ax-his2 30314  ax-his3 30315  ax-his4 30316
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-hnorm 30199  df-hvsub 30202
This theorem is referenced by:  normpar  30386  normpar2i  30387
  Copyright terms: Public domain W3C validator