HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpythi Structured version   Visualization version   GIF version

Theorem normpythi 30970
Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normsub.1 𝐴 ∈ ℋ
normsub.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normpythi ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))

Proof of Theorem normpythi
StepHypRef Expression
1 normsub.1 . . . 4 𝐴 ∈ ℋ
2 normsub.2 . . . 4 𝐵 ∈ ℋ
31, 2, 1, 2normlem8 30945 . . 3 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
4 id 22 . . . . . . 7 ((𝐴 ·ih 𝐵) = 0 → (𝐴 ·ih 𝐵) = 0)
5 orthcom 30936 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
61, 2, 5mp2an 690 . . . . . . . 8 ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)
76biimpi 215 . . . . . . 7 ((𝐴 ·ih 𝐵) = 0 → (𝐵 ·ih 𝐴) = 0)
84, 7oveq12d 7442 . . . . . 6 ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = (0 + 0))
9 00id 11425 . . . . . 6 (0 + 0) = 0
108, 9eqtrdi 2783 . . . . 5 ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = 0)
1110oveq2d 7440 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0))
121, 1hicli 30909 . . . . . 6 (𝐴 ·ih 𝐴) ∈ ℂ
132, 2hicli 30909 . . . . . 6 (𝐵 ·ih 𝐵) ∈ ℂ
1412, 13addcli 11256 . . . . 5 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ
1514addridi 11437 . . . 4 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
1611, 15eqtrdi 2783 . . 3 ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)))
173, 16eqtrid 2779 . 2 ((𝐴 ·ih 𝐵) = 0 → ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)))
181, 2hvaddcli 30846 . . 3 (𝐴 + 𝐵) ∈ ℋ
1918normsqi 30960 . 2 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
201normsqi 30960 . . 3 ((norm𝐴)↑2) = (𝐴 ·ih 𝐴)
212normsqi 30960 . . 3 ((norm𝐵)↑2) = (𝐵 ·ih 𝐵)
2220, 21oveq12i 7436 . 2 (((norm𝐴)↑2) + ((norm𝐵)↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
2317, 19, 223eqtr4g 2792 1 ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cfv 6551  (class class class)co 7424  0cc0 11144   + caddc 11147  2c2 12303  cexp 14064  chba 30747   + cva 30748   ·ih csp 30750  normcno 30751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222  ax-hfvadd 30828  ax-hv0cl 30831  ax-hvmul0 30838  ax-hfi 30907  ax-his1 30910  ax-his2 30911  ax-his3 30912  ax-his4 30913
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-seq 14005  df-exp 14065  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-hnorm 30796
This theorem is referenced by:  normpyth  30973  pjopythi  31547
  Copyright terms: Public domain W3C validator