| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normpythi | Structured version Visualization version GIF version | ||
| Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normsub.1 | ⊢ 𝐴 ∈ ℋ |
| normsub.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| normpythi | ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normsub.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | normsub.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2, 1, 2 | normlem8 31103 | . . 3 ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
| 4 | id 22 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐴 ·ih 𝐵) = 0) | |
| 5 | orthcom 31094 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
| 6 | 1, 2, 5 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0) |
| 7 | 6 | biimpi 216 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐵 ·ih 𝐴) = 0) |
| 8 | 4, 7 | oveq12d 7428 | . . . . . 6 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = (0 + 0)) |
| 9 | 00id 11415 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 10 | 8, 9 | eqtrdi 2787 | . . . . 5 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = 0) |
| 11 | 10 | oveq2d 7426 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0)) |
| 12 | 1, 1 | hicli 31067 | . . . . . 6 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
| 13 | 2, 2 | hicli 31067 | . . . . . 6 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
| 14 | 12, 13 | addcli 11246 | . . . . 5 ⊢ ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ |
| 15 | 14 | addridi 11427 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
| 16 | 11, 15 | eqtrdi 2787 | . . 3 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
| 17 | 3, 16 | eqtrid 2783 | . 2 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
| 18 | 1, 2 | hvaddcli 31004 | . . 3 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| 19 | 18 | normsqi 31118 | . 2 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
| 20 | 1 | normsqi 31118 | . . 3 ⊢ ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴) |
| 21 | 2 | normsqi 31118 | . . 3 ⊢ ((normℎ‘𝐵)↑2) = (𝐵 ·ih 𝐵) |
| 22 | 20, 21 | oveq12i 7422 | . 2 ⊢ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
| 23 | 17, 19, 22 | 3eqtr4g 2796 | 1 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 0cc0 11134 + caddc 11137 2c2 12300 ↑cexp 14084 ℋchba 30905 +ℎ cva 30906 ·ih csp 30908 normℎcno 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-hfvadd 30986 ax-hv0cl 30989 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-hnorm 30954 |
| This theorem is referenced by: normpyth 31131 pjopythi 31705 |
| Copyright terms: Public domain | W3C validator |