Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normpythi | Structured version Visualization version GIF version |
Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normsub.1 | ⊢ 𝐴 ∈ ℋ |
normsub.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
normpythi | ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normsub.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | normsub.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2, 1, 2 | normlem8 29014 | . . 3 ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
4 | id 22 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐴 ·ih 𝐵) = 0) | |
5 | orthcom 29005 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
6 | 1, 2, 5 | mp2an 691 | . . . . . . . 8 ⊢ ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0) |
7 | 6 | biimpi 219 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐵 ·ih 𝐴) = 0) |
8 | 4, 7 | oveq12d 7175 | . . . . . 6 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = (0 + 0)) |
9 | 00id 10867 | . . . . . 6 ⊢ (0 + 0) = 0 | |
10 | 8, 9 | eqtrdi 2810 | . . . . 5 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = 0) |
11 | 10 | oveq2d 7173 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0)) |
12 | 1, 1 | hicli 28978 | . . . . . 6 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
13 | 2, 2 | hicli 28978 | . . . . . 6 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
14 | 12, 13 | addcli 10699 | . . . . 5 ⊢ ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ |
15 | 14 | addid1i 10879 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
16 | 11, 15 | eqtrdi 2810 | . . 3 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
17 | 3, 16 | syl5eq 2806 | . 2 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
18 | 1, 2 | hvaddcli 28915 | . . 3 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
19 | 18 | normsqi 29029 | . 2 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
20 | 1 | normsqi 29029 | . . 3 ⊢ ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴) |
21 | 2 | normsqi 29029 | . . 3 ⊢ ((normℎ‘𝐵)↑2) = (𝐵 ·ih 𝐵) |
22 | 20, 21 | oveq12i 7169 | . 2 ⊢ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
23 | 17, 19, 22 | 3eqtr4g 2819 | 1 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ∈ wcel 2112 ‘cfv 6341 (class class class)co 7157 0cc0 10589 + caddc 10592 2c2 11743 ↑cexp 13493 ℋchba 28816 +ℎ cva 28817 ·ih csp 28819 normℎcno 28820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-hfvadd 28897 ax-hv0cl 28900 ax-hvmul0 28907 ax-hfi 28976 ax-his1 28979 ax-his2 28980 ax-his3 28981 ax-his4 28982 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-sup 8953 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-n0 11949 df-z 12035 df-uz 12297 df-rp 12445 df-seq 13433 df-exp 13494 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-hnorm 28865 |
This theorem is referenced by: normpyth 29042 pjopythi 29616 |
Copyright terms: Public domain | W3C validator |