| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normpythi | Structured version Visualization version GIF version | ||
| Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normsub.1 | ⊢ 𝐴 ∈ ℋ |
| normsub.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| normpythi | ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normsub.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | normsub.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2, 1, 2 | normlem8 31061 | . . 3 ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
| 4 | id 22 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐴 ·ih 𝐵) = 0) | |
| 5 | orthcom 31052 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
| 6 | 1, 2, 5 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0) |
| 7 | 6 | biimpi 216 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐵 ·ih 𝐴) = 0) |
| 8 | 4, 7 | oveq12d 7367 | . . . . . 6 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = (0 + 0)) |
| 9 | 00id 11291 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 10 | 8, 9 | eqtrdi 2780 | . . . . 5 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = 0) |
| 11 | 10 | oveq2d 7365 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0)) |
| 12 | 1, 1 | hicli 31025 | . . . . . 6 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
| 13 | 2, 2 | hicli 31025 | . . . . . 6 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
| 14 | 12, 13 | addcli 11121 | . . . . 5 ⊢ ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ |
| 15 | 14 | addridi 11303 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
| 16 | 11, 15 | eqtrdi 2780 | . . 3 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
| 17 | 3, 16 | eqtrid 2776 | . 2 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
| 18 | 1, 2 | hvaddcli 30962 | . . 3 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| 19 | 18 | normsqi 31076 | . 2 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
| 20 | 1 | normsqi 31076 | . . 3 ⊢ ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴) |
| 21 | 2 | normsqi 31076 | . . 3 ⊢ ((normℎ‘𝐵)↑2) = (𝐵 ·ih 𝐵) |
| 22 | 20, 21 | oveq12i 7361 | . 2 ⊢ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
| 23 | 17, 19, 22 | 3eqtr4g 2789 | 1 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 0cc0 11009 + caddc 11012 2c2 12183 ↑cexp 13968 ℋchba 30863 +ℎ cva 30864 ·ih csp 30866 normℎcno 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-hfvadd 30944 ax-hv0cl 30947 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-hnorm 30912 |
| This theorem is referenced by: normpyth 31089 pjopythi 31663 |
| Copyright terms: Public domain | W3C validator |