| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normpythi | Structured version Visualization version GIF version | ||
| Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normsub.1 | ⊢ 𝐴 ∈ ℋ |
| normsub.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| normpythi | ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normsub.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | normsub.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2, 1, 2 | normlem8 31052 | . . 3 ⊢ ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) |
| 4 | id 22 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐴 ·ih 𝐵) = 0) | |
| 5 | orthcom 31043 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)) | |
| 6 | 1, 2, 5 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0) |
| 7 | 6 | biimpi 216 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐵 ·ih 𝐴) = 0) |
| 8 | 4, 7 | oveq12d 7407 | . . . . . 6 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = (0 + 0)) |
| 9 | 00id 11355 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 10 | 8, 9 | eqtrdi 2781 | . . . . 5 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = 0) |
| 11 | 10 | oveq2d 7405 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0)) |
| 12 | 1, 1 | hicli 31016 | . . . . . 6 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
| 13 | 2, 2 | hicli 31016 | . . . . . 6 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
| 14 | 12, 13 | addcli 11186 | . . . . 5 ⊢ ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ |
| 15 | 14 | addridi 11367 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
| 16 | 11, 15 | eqtrdi 2781 | . . 3 ⊢ ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
| 17 | 3, 16 | eqtrid 2777 | . 2 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))) |
| 18 | 1, 2 | hvaddcli 30953 | . . 3 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
| 19 | 18 | normsqi 31067 | . 2 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
| 20 | 1 | normsqi 31067 | . . 3 ⊢ ((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴) |
| 21 | 2 | normsqi 31067 | . . 3 ⊢ ((normℎ‘𝐵)↑2) = (𝐵 ·ih 𝐵) |
| 22 | 20, 21 | oveq12i 7401 | . 2 ⊢ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) |
| 23 | 17, 19, 22 | 3eqtr4g 2790 | 1 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 0cc0 11074 + caddc 11077 2c2 12242 ↑cexp 14032 ℋchba 30854 +ℎ cva 30855 ·ih csp 30857 normℎcno 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-hfvadd 30935 ax-hv0cl 30938 ax-hvmul0 30945 ax-hfi 31014 ax-his1 31017 ax-his2 31018 ax-his3 31019 ax-his4 31020 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-hnorm 30903 |
| This theorem is referenced by: normpyth 31080 pjopythi 31654 |
| Copyright terms: Public domain | W3C validator |