Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpythi Structured version   Visualization version   GIF version

Theorem normpythi 29039
 Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normsub.1 𝐴 ∈ ℋ
normsub.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normpythi ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))

Proof of Theorem normpythi
StepHypRef Expression
1 normsub.1 . . . 4 𝐴 ∈ ℋ
2 normsub.2 . . . 4 𝐵 ∈ ℋ
31, 2, 1, 2normlem8 29014 . . 3 ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)))
4 id 22 . . . . . . 7 ((𝐴 ·ih 𝐵) = 0 → (𝐴 ·ih 𝐵) = 0)
5 orthcom 29005 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0))
61, 2, 5mp2an 691 . . . . . . . 8 ((𝐴 ·ih 𝐵) = 0 ↔ (𝐵 ·ih 𝐴) = 0)
76biimpi 219 . . . . . . 7 ((𝐴 ·ih 𝐵) = 0 → (𝐵 ·ih 𝐴) = 0)
84, 7oveq12d 7175 . . . . . 6 ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = (0 + 0))
9 00id 10867 . . . . . 6 (0 + 0) = 0
108, 9eqtrdi 2810 . . . . 5 ((𝐴 ·ih 𝐵) = 0 → ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴)) = 0)
1110oveq2d 7173 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0))
121, 1hicli 28978 . . . . . 6 (𝐴 ·ih 𝐴) ∈ ℂ
132, 2hicli 28978 . . . . . 6 (𝐵 ·ih 𝐵) ∈ ℂ
1412, 13addcli 10699 . . . . 5 ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) ∈ ℂ
1514addid1i 10879 . . . 4 (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + 0) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
1611, 15eqtrdi 2810 . . 3 ((𝐴 ·ih 𝐵) = 0 → (((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐵 ·ih 𝐴))) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)))
173, 16syl5eq 2806 . 2 ((𝐴 ·ih 𝐵) = 0 → ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵)))
181, 2hvaddcli 28915 . . 3 (𝐴 + 𝐵) ∈ ℋ
1918normsqi 29029 . 2 ((norm‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) ·ih (𝐴 + 𝐵))
201normsqi 29029 . . 3 ((norm𝐴)↑2) = (𝐴 ·ih 𝐴)
212normsqi 29029 . . 3 ((norm𝐵)↑2) = (𝐵 ·ih 𝐵)
2220, 21oveq12i 7169 . 2 (((norm𝐴)↑2) + ((norm𝐵)↑2)) = ((𝐴 ·ih 𝐴) + (𝐵 ·ih 𝐵))
2317, 19, 223eqtr4g 2819 1 ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1539   ∈ wcel 2112  ‘cfv 6341  (class class class)co 7157  0cc0 10589   + caddc 10592  2c2 11743  ↑cexp 13493   ℋchba 28816   +ℎ cva 28817   ·ih csp 28819  normℎcno 28820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-hfvadd 28897  ax-hv0cl 28900  ax-hvmul0 28907  ax-hfi 28976  ax-his1 28979  ax-his2 28980  ax-his3 28981  ax-his4 28982 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-sup 8953  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-seq 13433  df-exp 13494  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-hnorm 28865 This theorem is referenced by:  normpyth  29042  pjopythi  29616
 Copyright terms: Public domain W3C validator