HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcl Structured version   Visualization version   GIF version

Theorem hvsubcl 30001
Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubcl ((๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด โˆ’โ„Ž ๐ต) โˆˆ โ„‹)

Proof of Theorem hvsubcl
StepHypRef Expression
1 hvsubval 30000 . 2 ((๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด โˆ’โ„Ž ๐ต) = (๐ด +โ„Ž (-1 ยทโ„Ž ๐ต)))
2 neg1cn 12274 . . . 4 -1 โˆˆ โ„‚
3 hvmulcl 29997 . . . 4 ((-1 โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‹) โ†’ (-1 ยทโ„Ž ๐ต) โˆˆ โ„‹)
42, 3mpan 689 . . 3 (๐ต โˆˆ โ„‹ โ†’ (-1 ยทโ„Ž ๐ต) โˆˆ โ„‹)
5 hvaddcl 29996 . . 3 ((๐ด โˆˆ โ„‹ โˆง (-1 ยทโ„Ž ๐ต) โˆˆ โ„‹) โ†’ (๐ด +โ„Ž (-1 ยทโ„Ž ๐ต)) โˆˆ โ„‹)
64, 5sylan2 594 . 2 ((๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด +โ„Ž (-1 ยทโ„Ž ๐ต)) โˆˆ โ„‹)
71, 6eqeltrd 2838 1 ((๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด โˆ’โ„Ž ๐ต) โˆˆ โ„‹)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   โˆˆ wcel 2107  (class class class)co 7362  โ„‚cc 11056  1c1 11059  -cneg 11393   โ„‹chba 29903   +โ„Ž cva 29904   ยทโ„Ž csm 29905   โˆ’โ„Ž cmv 29909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-hfvadd 29984  ax-hfvmul 29989
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-ltxr 11201  df-sub 11394  df-neg 11395  df-hvsub 29955
This theorem is referenced by:  hvsubcli  30005  hvmulcan  30056  hvsubcan2  30059  hvaddsub4  30062  his2sub2  30077  hi2eq  30089  hial2eq  30090  hhph  30162  pjhthlem1  30375  pjhthlem2  30376  chscllem2  30622  5oalem2  30639  5oalem3  30640  5oalem5  30642  3oalem2  30647  hodcl  30731  hosubcli  30753  unopf1o  30900  lnopeq0i  30991  lnconi  31017  riesz3i  31046  riesz4i  31047  hmopidmpji  31136  pjclem4  31183  pj3si  31191  cdj1i  31417
  Copyright terms: Public domain W3C validator