| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubval 30945 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
| 2 | neg1cn 12171 | . . . 4 ⊢ -1 ∈ ℂ | |
| 3 | hvmulcl 30942 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
| 5 | hvaddcl 30941 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ) | |
| 6 | 4, 5 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ) |
| 7 | 1, 6 | eqeltrd 2828 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 -cneg 11406 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 −ℎ cmv 30854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-hfvadd 30929 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-hvsub 30900 |
| This theorem is referenced by: hvsubcli 30950 hvmulcan 31001 hvsubcan2 31004 hvaddsub4 31007 his2sub2 31022 hi2eq 31034 hial2eq 31035 hhph 31107 pjhthlem1 31320 pjhthlem2 31321 chscllem2 31567 5oalem2 31584 5oalem3 31585 5oalem5 31587 3oalem2 31592 hodcl 31676 hosubcli 31698 unopf1o 31845 lnopeq0i 31936 lnconi 31962 riesz3i 31991 riesz4i 31992 hmopidmpji 32081 pjclem4 32128 pj3si 32136 cdj1i 32362 |
| Copyright terms: Public domain | W3C validator |