HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcl Structured version   Visualization version   GIF version

Theorem hvsubcl 30995
Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubcl ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)

Proof of Theorem hvsubcl
StepHypRef Expression
1 hvsubval 30994 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
2 neg1cn 12110 . . . 4 -1 ∈ ℂ
3 hvmulcl 30991 . . . 4 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
42, 3mpan 690 . . 3 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
5 hvaddcl 30990 . . 3 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ) → (𝐴 + (-1 · 𝐵)) ∈ ℋ)
64, 5sylan2 593 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + (-1 · 𝐵)) ∈ ℋ)
71, 6eqeltrd 2831 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  (class class class)co 7346  cc 11004  1c1 11007  -cneg 11345  chba 30897   + cva 30898   · csm 30899   cmv 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hfvadd 30978  ax-hfvmul 30983
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-hvsub 30949
This theorem is referenced by:  hvsubcli  30999  hvmulcan  31050  hvsubcan2  31053  hvaddsub4  31056  his2sub2  31071  hi2eq  31083  hial2eq  31084  hhph  31156  pjhthlem1  31369  pjhthlem2  31370  chscllem2  31616  5oalem2  31633  5oalem3  31634  5oalem5  31636  3oalem2  31641  hodcl  31725  hosubcli  31747  unopf1o  31894  lnopeq0i  31985  lnconi  32011  riesz3i  32040  riesz4i  32041  hmopidmpji  32130  pjclem4  32177  pj3si  32185  cdj1i  32411
  Copyright terms: Public domain W3C validator