HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcl Structured version   Visualization version   GIF version

Theorem hvsubcl 30820
Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubcl ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)

Proof of Theorem hvsubcl
StepHypRef Expression
1 hvsubval 30819 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
2 neg1cn 12350 . . . 4 -1 ∈ ℂ
3 hvmulcl 30816 . . . 4 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
42, 3mpan 689 . . 3 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
5 hvaddcl 30815 . . 3 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ) → (𝐴 + (-1 · 𝐵)) ∈ ℋ)
64, 5sylan2 592 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + (-1 · 𝐵)) ∈ ℋ)
71, 6eqeltrd 2829 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  (class class class)co 7414  cc 11130  1c1 11133  -cneg 11469  chba 30722   + cva 30723   · csm 30724   cmv 30728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-hfvadd 30803  ax-hfvmul 30808
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-ltxr 11277  df-sub 11470  df-neg 11471  df-hvsub 30774
This theorem is referenced by:  hvsubcli  30824  hvmulcan  30875  hvsubcan2  30878  hvaddsub4  30881  his2sub2  30896  hi2eq  30908  hial2eq  30909  hhph  30981  pjhthlem1  31194  pjhthlem2  31195  chscllem2  31441  5oalem2  31458  5oalem3  31459  5oalem5  31461  3oalem2  31466  hodcl  31550  hosubcli  31572  unopf1o  31719  lnopeq0i  31810  lnconi  31836  riesz3i  31865  riesz4i  31866  hmopidmpji  31955  pjclem4  32002  pj3si  32010  cdj1i  32236
  Copyright terms: Public domain W3C validator