| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubcl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubval 31002 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
| 2 | neg1cn 12359 | . . . 4 ⊢ -1 ∈ ℂ | |
| 3 | hvmulcl 30999 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
| 5 | hvaddcl 30998 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ) | |
| 6 | 4, 5 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ) |
| 7 | 1, 6 | eqeltrd 2835 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 1c1 11135 -cneg 11472 ℋchba 30905 +ℎ cva 30906 ·ℎ csm 30907 −ℎ cmv 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hfvadd 30986 ax-hfvmul 30991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-hvsub 30957 |
| This theorem is referenced by: hvsubcli 31007 hvmulcan 31058 hvsubcan2 31061 hvaddsub4 31064 his2sub2 31079 hi2eq 31091 hial2eq 31092 hhph 31164 pjhthlem1 31377 pjhthlem2 31378 chscllem2 31624 5oalem2 31641 5oalem3 31642 5oalem5 31644 3oalem2 31649 hodcl 31733 hosubcli 31755 unopf1o 31902 lnopeq0i 31993 lnconi 32019 riesz3i 32048 riesz4i 32049 hmopidmpji 32138 pjclem4 32185 pj3si 32193 cdj1i 32419 |
| Copyright terms: Public domain | W3C validator |