Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > polidi | Structured version Visualization version GIF version |
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 28966. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polid.1 | ⊢ 𝐴 ∈ ℋ |
polid.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
polidi | ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid.1 | . . 3 ⊢ 𝐴 ∈ ℋ | |
2 | polid.2 | . . 3 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2, 2, 1 | polid2i 29039 | . 2 ⊢ (𝐴 ·ih 𝐵) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) |
4 | 1, 2 | hvaddcli 28900 | . . . . . 6 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
5 | 4 | normsqi 29014 | . . . . 5 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
6 | 1, 2 | hvsubcli 28903 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ |
7 | 6 | normsqi 29014 | . . . . 5 ⊢ ((normℎ‘(𝐴 −ℎ 𝐵))↑2) = ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) |
8 | 5, 7 | oveq12i 7162 | . . . 4 ⊢ (((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) = (((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) |
9 | ax-icn 10634 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
10 | 9, 2 | hvmulcli 28896 | . . . . . . . 8 ⊢ (i ·ℎ 𝐵) ∈ ℋ |
11 | 1, 10 | hvaddcli 28900 | . . . . . . 7 ⊢ (𝐴 +ℎ (i ·ℎ 𝐵)) ∈ ℋ |
12 | 11 | normsqi 29014 | . . . . . 6 ⊢ ((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) |
13 | 1, 10 | hvsubcli 28903 | . . . . . . 7 ⊢ (𝐴 −ℎ (i ·ℎ 𝐵)) ∈ ℋ |
14 | 13 | normsqi 29014 | . . . . . 6 ⊢ ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))) |
15 | 12, 14 | oveq12i 7162 | . . . . 5 ⊢ (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)) = (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))) |
16 | 15 | oveq2i 7161 | . . . 4 ⊢ (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2))) = (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))))) |
17 | 8, 16 | oveq12i 7162 | . . 3 ⊢ ((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) = ((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) |
18 | 17 | oveq1i 7160 | . 2 ⊢ (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) |
19 | 3, 18 | eqtr4i 2784 | 1 ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 ici 10577 + caddc 10578 · cmul 10580 − cmin 10908 / cdiv 11335 2c2 11729 4c4 11731 ↑cexp 13479 ℋchba 28801 +ℎ cva 28802 ·ℎ csm 28803 ·ih csp 28804 normℎcno 28805 −ℎ cmv 28807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-hfvadd 28882 ax-hv0cl 28885 ax-hfvmul 28887 ax-hvmul0 28892 ax-hfi 28961 ax-his1 28964 ax-his2 28965 ax-his3 28966 ax-his4 28967 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-hnorm 28850 df-hvsub 28853 |
This theorem is referenced by: polid 29041 |
Copyright terms: Public domain | W3C validator |