|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > polidi | Structured version Visualization version GIF version | ||
| Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 31103. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| polid.1 | ⊢ 𝐴 ∈ ℋ | 
| polid.2 | ⊢ 𝐵 ∈ ℋ | 
| Ref | Expression | 
|---|---|
| polidi | ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | polid.1 | . . 3 ⊢ 𝐴 ∈ ℋ | |
| 2 | polid.2 | . . 3 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2, 2, 1 | polid2i 31176 | . 2 ⊢ (𝐴 ·ih 𝐵) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) | 
| 4 | 1, 2 | hvaddcli 31037 | . . . . . 6 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ | 
| 5 | 4 | normsqi 31151 | . . . . 5 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) | 
| 6 | 1, 2 | hvsubcli 31040 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ | 
| 7 | 6 | normsqi 31151 | . . . . 5 ⊢ ((normℎ‘(𝐴 −ℎ 𝐵))↑2) = ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) | 
| 8 | 5, 7 | oveq12i 7443 | . . . 4 ⊢ (((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) = (((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) | 
| 9 | ax-icn 11214 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 10 | 9, 2 | hvmulcli 31033 | . . . . . . . 8 ⊢ (i ·ℎ 𝐵) ∈ ℋ | 
| 11 | 1, 10 | hvaddcli 31037 | . . . . . . 7 ⊢ (𝐴 +ℎ (i ·ℎ 𝐵)) ∈ ℋ | 
| 12 | 11 | normsqi 31151 | . . . . . 6 ⊢ ((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) | 
| 13 | 1, 10 | hvsubcli 31040 | . . . . . . 7 ⊢ (𝐴 −ℎ (i ·ℎ 𝐵)) ∈ ℋ | 
| 14 | 13 | normsqi 31151 | . . . . . 6 ⊢ ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))) | 
| 15 | 12, 14 | oveq12i 7443 | . . . . 5 ⊢ (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)) = (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))) | 
| 16 | 15 | oveq2i 7442 | . . . 4 ⊢ (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2))) = (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))))) | 
| 17 | 8, 16 | oveq12i 7443 | . . 3 ⊢ ((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) = ((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) | 
| 18 | 17 | oveq1i 7441 | . 2 ⊢ (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) | 
| 19 | 3, 18 | eqtr4i 2768 | 1 ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ici 11157 + caddc 11158 · cmul 11160 − cmin 11492 / cdiv 11920 2c2 12321 4c4 12323 ↑cexp 14102 ℋchba 30938 +ℎ cva 30939 ·ℎ csm 30940 ·ih csp 30941 normℎcno 30942 −ℎ cmv 30944 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-hfvadd 31019 ax-hv0cl 31022 ax-hfvmul 31024 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-hnorm 30987 df-hvsub 30990 | 
| This theorem is referenced by: polid 31178 | 
| Copyright terms: Public domain | W3C validator |