MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu1 Structured version   Visualization version   GIF version

Theorem idfu1 17898
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfu1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idfu1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)

Proof of Theorem idfu1
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
41, 2, 3idfu1st 17897 . . 3 (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
54fveq1d 6883 . 2 (𝜑 → ((1st𝐼)‘𝑋) = (( I ↾ 𝐵)‘𝑋))
6 idfu1.x . . 3 (𝜑𝑋𝐵)
7 fvresi 7170 . . 3 (𝑋𝐵 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
86, 7syl 17 . 2 (𝜑 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
95, 8eqtrd 2771 1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   I cid 5552  cres 5661  cfv 6536  1st c1st 7991  Basecbs 17233  Catccat 17681  idfunccidfu 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1st 7993  df-idfu 17877
This theorem is referenced by:  idffth  17953  ressffth  17958  catciso  18129  idfu1a  49028
  Copyright terms: Public domain W3C validator