MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu1 Structured version   Visualization version   GIF version

Theorem idfu1 17787
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfu1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idfu1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)

Proof of Theorem idfu1
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
41, 2, 3idfu1st 17786 . . 3 (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
54fveq1d 6824 . 2 (𝜑 → ((1st𝐼)‘𝑋) = (( I ↾ 𝐵)‘𝑋))
6 idfu1.x . . 3 (𝜑𝑋𝐵)
7 fvresi 7107 . . 3 (𝑋𝐵 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
86, 7syl 17 . 2 (𝜑 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
95, 8eqtrd 2766 1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   I cid 5508  cres 5616  cfv 6481  1st c1st 7919  Basecbs 17120  Catccat 17570  idfunccidfu 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-idfu 17766
This theorem is referenced by:  idffth  17842  ressffth  17847  catciso  18018  idfu1a  49213  cofid1a  49223
  Copyright terms: Public domain W3C validator