MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu1 Structured version   Visualization version   GIF version

Theorem idfu1 17826
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfu1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idfu1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)

Proof of Theorem idfu1
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
41, 2, 3idfu1st 17825 . . 3 (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
54fveq1d 6890 . 2 (𝜑 → ((1st𝐼)‘𝑋) = (( I ↾ 𝐵)‘𝑋))
6 idfu1.x . . 3 (𝜑𝑋𝐵)
7 fvresi 7167 . . 3 (𝑋𝐵 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
86, 7syl 17 . 2 (𝜑 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
95, 8eqtrd 2772 1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106   I cid 5572  cres 5677  cfv 6540  1st c1st 7969  Basecbs 17140  Catccat 17604  idfunccidfu 17801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1st 7971  df-idfu 17805
This theorem is referenced by:  idffth  17880  ressffth  17885  catciso  18057
  Copyright terms: Public domain W3C validator