MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu1 Structured version   Visualization version   GIF version

Theorem idfu1 17925
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfu1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idfu1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)

Proof of Theorem idfu1
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
41, 2, 3idfu1st 17924 . . 3 (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
54fveq1d 6908 . 2 (𝜑 → ((1st𝐼)‘𝑋) = (( I ↾ 𝐵)‘𝑋))
6 idfu1.x . . 3 (𝜑𝑋𝐵)
7 fvresi 7193 . . 3 (𝑋𝐵 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
86, 7syl 17 . 2 (𝜑 → (( I ↾ 𝐵)‘𝑋) = 𝑋)
95, 8eqtrd 2777 1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   I cid 5577  cres 5687  cfv 6561  1st c1st 8012  Basecbs 17247  Catccat 17707  idfunccidfu 17900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-1st 8014  df-idfu 17904
This theorem is referenced by:  idffth  17980  ressffth  17985  catciso  18156
  Copyright terms: Public domain W3C validator