| Step | Hyp | Ref
| Expression |
| 1 | | relfunc 17907 |
. . 3
⊢ Rel
(𝐷 Func 𝐷) |
| 2 | | ressffth.d |
. . . . 5
⊢ 𝐷 = (𝐶 ↾s 𝑆) |
| 3 | | resscat 17897 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
| 4 | 2, 3 | eqeltrid 2845 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐷 ∈ Cat) |
| 5 | | ressffth.i |
. . . . 5
⊢ 𝐼 =
(idfunc‘𝐷) |
| 6 | 5 | idfucl 17926 |
. . . 4
⊢ (𝐷 ∈ Cat → 𝐼 ∈ (𝐷 Func 𝐷)) |
| 7 | 4, 6 | syl 17 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐼 ∈ (𝐷 Func 𝐷)) |
| 8 | | 1st2nd 8064 |
. . 3
⊢ ((Rel
(𝐷 Func 𝐷) ∧ 𝐼 ∈ (𝐷 Func 𝐷)) → 𝐼 = 〈(1st ‘𝐼), (2nd ‘𝐼)〉) |
| 9 | 1, 7, 8 | sylancr 587 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐼 = 〈(1st ‘𝐼), (2nd ‘𝐼)〉) |
| 10 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf
‘𝐷) =
(Homf ‘𝐷)) |
| 11 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) →
(compf‘𝐷) = (compf‘𝐷)) |
| 12 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 13 | 12 | ressinbas 17291 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑉 → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
| 14 | 13 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
| 15 | 2, 14 | eqtrid 2789 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐷 = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
| 16 | 15 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf
‘𝐷) =
(Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶))))) |
| 17 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
| 18 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐶 ∈ Cat) |
| 19 | | inss2 4238 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶) |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)) |
| 21 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) |
| 22 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) |
| 23 | 12, 17, 18, 20, 21, 22 | fullresc 17896 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf
‘(𝐶
↾s (𝑆
∩ (Base‘𝐶)))) =
(Homf ‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧
(compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))) |
| 24 | 23 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf
‘(𝐶
↾s (𝑆
∩ (Base‘𝐶)))) =
(Homf ‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 25 | 16, 24 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf
‘𝐷) =
(Homf ‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 26 | 15 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) →
(compf‘𝐷) = (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶))))) |
| 27 | 23 | simprd 495 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) →
(compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 28 | 26, 27 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) →
(compf‘𝐷) = (compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 29 | 2 | ovexi 7465 |
. . . . . . . . . 10
⊢ 𝐷 ∈ V |
| 30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐷 ∈ V) |
| 31 | | ovexd 7466 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ V) |
| 32 | 10, 11, 25, 28, 30, 30, 30, 31 | funcpropd 17947 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐷 Func 𝐷) = (𝐷 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 33 | 12, 17, 18, 20 | fullsubc 17895 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf
‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶)) |
| 34 | | funcres2 17943 |
. . . . . . . . 9
⊢
(((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶) → (𝐷 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ⊆ (𝐷 Func 𝐶)) |
| 35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐷 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ⊆ (𝐷 Func 𝐶)) |
| 36 | 32, 35 | eqsstrd 4018 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐷 Func 𝐷) ⊆ (𝐷 Func 𝐶)) |
| 37 | 36, 7 | sseldd 3984 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐼 ∈ (𝐷 Func 𝐶)) |
| 38 | 9, 37 | eqeltrrd 2842 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ (𝐷 Func 𝐶)) |
| 39 | | df-br 5144 |
. . . . 5
⊢
((1st ‘𝐼)(𝐷 Func 𝐶)(2nd ‘𝐼) ↔ 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ (𝐷 Func 𝐶)) |
| 40 | 38, 39 | sylibr 234 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (1st ‘𝐼)(𝐷 Func 𝐶)(2nd ‘𝐼)) |
| 41 | | f1oi 6886 |
. . . . . 6
⊢ ( I
↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦) |
| 42 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 43 | 4 | adantr 480 |
. . . . . . . 8
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat) |
| 44 | | eqid 2737 |
. . . . . . . 8
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 45 | | simprl 771 |
. . . . . . . 8
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷)) |
| 46 | | simprr 773 |
. . . . . . . 8
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) |
| 47 | 5, 42, 43, 44, 45, 46 | idfu2nd 17922 |
. . . . . . 7
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd ‘𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦))) |
| 48 | | eqidd 2738 |
. . . . . . 7
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
| 49 | | eqid 2737 |
. . . . . . . . . 10
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 50 | 2, 49 | resshom 17463 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝑉 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
| 51 | 50 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐷)) |
| 52 | 5, 42, 43, 45 | idfu1 17925 |
. . . . . . . 8
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st ‘𝐼)‘𝑥) = 𝑥) |
| 53 | 5, 42, 43, 46 | idfu1 17925 |
. . . . . . . 8
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st ‘𝐼)‘𝑦) = 𝑦) |
| 54 | 51, 52, 53 | oveq123d 7452 |
. . . . . . 7
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦)) = (𝑥(Hom ‘𝐷)𝑦)) |
| 55 | 47, 48, 54 | f1oeq123d 6842 |
. . . . . 6
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦))) |
| 56 | 41, 55 | mpbiri 258 |
. . . . 5
⊢ (((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦))) |
| 57 | 56 | ralrimivva 3202 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦))) |
| 58 | 42, 44, 49 | isffth2 17963 |
. . . 4
⊢
((1st ‘𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd ‘𝐼) ↔ ((1st ‘𝐼)(𝐷 Func 𝐶)(2nd ‘𝐼) ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦)))) |
| 59 | 40, 57, 58 | sylanbrc 583 |
. . 3
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (1st ‘𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd ‘𝐼)) |
| 60 | | df-br 5144 |
. . 3
⊢
((1st ‘𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd ‘𝐼) ↔ 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))) |
| 61 | 59, 60 | sylib 218 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))) |
| 62 | 9, 61 | eqeltrd 2841 |
1
⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐼 ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))) |