MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressffth Structured version   Visualization version   GIF version

Theorem ressffth 17200
Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in [Adamek] p. 49. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
ressffth.d 𝐷 = (𝐶s 𝑆)
ressffth.i 𝐼 = (idfunc𝐷)
Assertion
Ref Expression
ressffth ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))

Proof of Theorem ressffth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17124 . . 3 Rel (𝐷 Func 𝐷)
2 ressffth.d . . . . 5 𝐷 = (𝐶s 𝑆)
3 resscat 17114 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) ∈ Cat)
42, 3eqeltrid 2915 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐷 ∈ Cat)
5 ressffth.i . . . . 5 𝐼 = (idfunc𝐷)
65idfucl 17143 . . . 4 (𝐷 ∈ Cat → 𝐼 ∈ (𝐷 Func 𝐷))
74, 6syl 17 . . 3 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ (𝐷 Func 𝐷))
8 1st2nd 7730 . . 3 ((Rel (𝐷 Func 𝐷) ∧ 𝐼 ∈ (𝐷 Func 𝐷)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
91, 7, 8sylancr 589 . 2 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
10 eqidd 2820 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf𝐷) = (Homf𝐷))
11 eqidd 2820 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf𝐷) = (compf𝐷))
12 eqid 2819 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
1312ressinbas 16552 . . . . . . . . . . . . 13 (𝑆𝑉 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
1413adantl 484 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
152, 14syl5eq 2866 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐷 = (𝐶s (𝑆 ∩ (Base‘𝐶))))
1615fveq2d 6667 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf𝐷) = (Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))))
17 eqid 2819 . . . . . . . . . . . 12 (Homf𝐶) = (Homf𝐶)
18 simpl 485 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐶 ∈ Cat)
19 inss2 4204 . . . . . . . . . . . . 13 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
2019a1i 11 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
21 eqid 2819 . . . . . . . . . . . 12 (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑆 ∩ (Base‘𝐶)))
22 eqid 2819 . . . . . . . . . . . 12 (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))
2312, 17, 18, 20, 21, 22fullresc 17113 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ((Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧ (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))))
2423simpld 497 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
2516, 24eqtrd 2854 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf𝐷) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
2615fveq2d 6667 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf𝐷) = (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))))
2723simprd 498 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
2826, 27eqtrd 2854 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf𝐷) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
292ovexi 7182 . . . . . . . . . 10 𝐷 ∈ V
3029a1i 11 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐷 ∈ V)
31 ovexd 7183 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ V)
3210, 11, 25, 28, 30, 30, 30, 31funcpropd 17162 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐷 Func 𝐷) = (𝐷 Func (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
3312, 17, 18, 20fullsubc 17112 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶))
34 funcres2 17160 . . . . . . . . 9 (((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶) → (𝐷 Func (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ⊆ (𝐷 Func 𝐶))
3533, 34syl 17 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐷 Func (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ⊆ (𝐷 Func 𝐶))
3632, 35eqsstrd 4003 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐷 Func 𝐷) ⊆ (𝐷 Func 𝐶))
3736, 7sseldd 3966 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ (𝐷 Func 𝐶))
389, 37eqeltrrd 2912 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Func 𝐶))
39 df-br 5058 . . . . 5 ((1st𝐼)(𝐷 Func 𝐶)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Func 𝐶))
4038, 39sylibr 236 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (1st𝐼)(𝐷 Func 𝐶)(2nd𝐼))
41 f1oi 6645 . . . . . 6 ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦)
42 eqid 2819 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
434adantr 483 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat)
44 eqid 2819 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
45 simprl 769 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
46 simprr 771 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
475, 42, 43, 44, 45, 46idfu2nd 17139 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
48 eqidd 2820 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
49 eqid 2819 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
502, 49resshom 16683 . . . . . . . . 9 (𝑆𝑉 → (Hom ‘𝐶) = (Hom ‘𝐷))
5150ad2antlr 725 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐷))
525, 42, 43, 45idfu1 17142 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st𝐼)‘𝑥) = 𝑥)
535, 42, 43, 46idfu1 17142 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st𝐼)‘𝑦) = 𝑦)
5451, 52, 53oveq123d 7169 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) = (𝑥(Hom ‘𝐷)𝑦))
5547, 48, 54f1oeq123d 6603 . . . . . 6 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦)))
5641, 55mpbiri 260 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
5756ralrimivva 3189 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
5842, 44, 49isffth2 17178 . . . 4 ((1st𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd𝐼) ↔ ((1st𝐼)(𝐷 Func 𝐶)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦))))
5940, 57, 58sylanbrc 585 . . 3 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (1st𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd𝐼))
60 df-br 5058 . . 3 ((1st𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))
6159, 60sylib 220 . 2 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))
629, 61eqeltrd 2911 1 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  Vcvv 3493  cin 3933  wss 3934  cop 4565   class class class wbr 5057   I cid 5452   × cxp 5546  cres 5550  Rel wrel 5553  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  1st c1st 7679  2nd c2nd 7680  Basecbs 16475  s cress 16476  Hom chom 16568  Catccat 16927  Homf chomf 16929  compfccomf 16930  cat cresc 17070  Subcatcsubc 17071   Func cfunc 17116  idfunccidfu 17117   Full cful 17164   Faith cfth 17165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-homf 16933  df-comf 16934  df-ssc 17072  df-resc 17073  df-subc 17074  df-func 17120  df-idfu 17121  df-full 17166  df-fth 17167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator