MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idffth Structured version   Visualization version   GIF version

Theorem idffth 17649
Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
idffth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idffth (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))

Proof of Theorem idffth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17577 . . 3 Rel (𝐶 Func 𝐶)
2 idffth.i . . . 4 𝐼 = (idfunc𝐶)
32idfucl 17596 . . 3 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
4 1st2nd 7880 . . 3 ((Rel (𝐶 Func 𝐶) ∧ 𝐼 ∈ (𝐶 Func 𝐶)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
51, 3, 4sylancr 587 . 2 (𝐶 ∈ Cat → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
65, 3eqeltrrd 2840 . . . . 5 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
7 df-br 5075 . . . . 5 ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
86, 7sylibr 233 . . . 4 (𝐶 ∈ Cat → (1st𝐼)(𝐶 Func 𝐶)(2nd𝐼))
9 f1oi 6754 . . . . . 6 ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)
10 eqid 2738 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 483 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 eqid 2738 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
13 simprl 768 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
14 simprr 770 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
152, 10, 11, 12, 13, 14idfu2nd 17592 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦)))
16 eqidd 2739 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
172, 10, 11, 13idfu1 17595 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑥) = 𝑥)
182, 10, 11, 14idfu1 17595 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑦) = 𝑦)
1917, 18oveq12d 7293 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) = (𝑥(Hom ‘𝐶)𝑦))
2015, 16, 19f1oeq123d 6710 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)))
219, 20mpbiri 257 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2221ralrimivva 3123 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2310, 12, 12isffth2 17632 . . . 4 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦))))
248, 22, 23sylanbrc 583 . . 3 (𝐶 ∈ Cat → (1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼))
25 df-br 5075 . . 3 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
2624, 25sylib 217 . 2 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
275, 26eqeltrd 2839 1 (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cin 3886  cop 4567   class class class wbr 5074   I cid 5488  cres 5591  Rel wrel 5594  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  Hom chom 16973  Catccat 17373   Func cfunc 17569  idfunccidfu 17570   Full cful 17618   Faith cfth 17619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ixp 8686  df-cat 17377  df-cid 17378  df-func 17573  df-idfu 17574  df-full 17620  df-fth 17621
This theorem is referenced by:  rescfth  17653
  Copyright terms: Public domain W3C validator