MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idffth Structured version   Visualization version   GIF version

Theorem idffth 17064
Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
idffth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idffth (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))

Proof of Theorem idffth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 16993 . . 3 Rel (𝐶 Func 𝐶)
2 idffth.i . . . 4 𝐼 = (idfunc𝐶)
32idfucl 17012 . . 3 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
4 1st2nd 7552 . . 3 ((Rel (𝐶 Func 𝐶) ∧ 𝐼 ∈ (𝐶 Func 𝐶)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
51, 3, 4sylancr 578 . 2 (𝐶 ∈ Cat → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
65, 3eqeltrrd 2867 . . . . 5 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
7 df-br 4931 . . . . 5 ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
86, 7sylibr 226 . . . 4 (𝐶 ∈ Cat → (1st𝐼)(𝐶 Func 𝐶)(2nd𝐼))
9 f1oi 6483 . . . . . 6 ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)
10 eqid 2778 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 475 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 eqid 2778 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
13 simprl 758 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
14 simprr 760 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
152, 10, 11, 12, 13, 14idfu2nd 17008 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦)))
16 eqidd 2779 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
172, 10, 11, 13idfu1 17011 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑥) = 𝑥)
182, 10, 11, 14idfu1 17011 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑦) = 𝑦)
1917, 18oveq12d 6996 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) = (𝑥(Hom ‘𝐶)𝑦))
2015, 16, 19f1oeq123d 6441 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)))
219, 20mpbiri 250 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2221ralrimivva 3141 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2310, 12, 12isffth2 17047 . . . 4 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦))))
248, 22, 23sylanbrc 575 . . 3 (𝐶 ∈ Cat → (1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼))
25 df-br 4931 . . 3 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
2624, 25sylib 210 . 2 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
275, 26eqeltrd 2866 1 (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wral 3088  cin 3830  cop 4448   class class class wbr 4930   I cid 5312  cres 5410  Rel wrel 5413  1-1-ontowf1o 6189  cfv 6190  (class class class)co 6978  1st c1st 7501  2nd c2nd 7502  Basecbs 16342  Hom chom 16435  Catccat 16796   Func cfunc 16985  idfunccidfu 16986   Full cful 17033   Faith cfth 17034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-1st 7503  df-2nd 7504  df-map 8210  df-ixp 8262  df-cat 16800  df-cid 16801  df-func 16989  df-idfu 16990  df-full 17035  df-fth 17036
This theorem is referenced by:  rescfth  17068
  Copyright terms: Public domain W3C validator