Step | Hyp | Ref
| Expression |
1 | | relfunc 17493 |
. . 3
⊢ Rel
(𝐶 Func 𝐶) |
2 | | idffth.i |
. . . 4
⊢ 𝐼 =
(idfunc‘𝐶) |
3 | 2 | idfucl 17512 |
. . 3
⊢ (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶)) |
4 | | 1st2nd 7853 |
. . 3
⊢ ((Rel
(𝐶 Func 𝐶) ∧ 𝐼 ∈ (𝐶 Func 𝐶)) → 𝐼 = 〈(1st ‘𝐼), (2nd ‘𝐼)〉) |
5 | 1, 3, 4 | sylancr 586 |
. 2
⊢ (𝐶 ∈ Cat → 𝐼 = 〈(1st
‘𝐼), (2nd
‘𝐼)〉) |
6 | 5, 3 | eqeltrrd 2840 |
. . . . 5
⊢ (𝐶 ∈ Cat →
〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ (𝐶 Func 𝐶)) |
7 | | df-br 5071 |
. . . . 5
⊢
((1st ‘𝐼)(𝐶 Func 𝐶)(2nd ‘𝐼) ↔ 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ (𝐶 Func 𝐶)) |
8 | 6, 7 | sylibr 233 |
. . . 4
⊢ (𝐶 ∈ Cat →
(1st ‘𝐼)(𝐶 Func 𝐶)(2nd ‘𝐼)) |
9 | | f1oi 6737 |
. . . . . 6
⊢ ( I
↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦) |
10 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
11 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
12 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
13 | | simprl 767 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
14 | | simprr 769 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
15 | 2, 10, 11, 12, 13, 14 | idfu2nd 17508 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦))) |
16 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
17 | 2, 10, 11, 13 | idfu1 17511 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐼)‘𝑥) = 𝑥) |
18 | 2, 10, 11, 14 | idfu1 17511 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐼)‘𝑦) = 𝑦) |
19 | 17, 18 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦)) = (𝑥(Hom ‘𝐶)𝑦)) |
20 | 15, 16, 19 | f1oeq123d 6694 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦))) |
21 | 9, 20 | mpbiri 257 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦))) |
22 | 21 | ralrimivva 3114 |
. . . 4
⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦))) |
23 | 10, 12, 12 | isffth2 17548 |
. . . 4
⊢
((1st ‘𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd ‘𝐼) ↔ ((1st ‘𝐼)(𝐶 Func 𝐶)(2nd ‘𝐼) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st ‘𝐼)‘𝑥)(Hom ‘𝐶)((1st ‘𝐼)‘𝑦)))) |
24 | 8, 22, 23 | sylanbrc 582 |
. . 3
⊢ (𝐶 ∈ Cat →
(1st ‘𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd ‘𝐼)) |
25 | | df-br 5071 |
. . 3
⊢
((1st ‘𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd ‘𝐼) ↔ 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))) |
26 | 24, 25 | sylib 217 |
. 2
⊢ (𝐶 ∈ Cat →
〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))) |
27 | 5, 26 | eqeltrd 2839 |
1
⊢ (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))) |