MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idffth Structured version   Visualization version   GIF version

Theorem idffth 17199
Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
idffth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idffth (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))

Proof of Theorem idffth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17128 . . 3 Rel (𝐶 Func 𝐶)
2 idffth.i . . . 4 𝐼 = (idfunc𝐶)
32idfucl 17147 . . 3 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
4 1st2nd 7724 . . 3 ((Rel (𝐶 Func 𝐶) ∧ 𝐼 ∈ (𝐶 Func 𝐶)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
51, 3, 4sylancr 590 . 2 (𝐶 ∈ Cat → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
65, 3eqeltrrd 2894 . . . . 5 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
7 df-br 5034 . . . . 5 ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
86, 7sylibr 237 . . . 4 (𝐶 ∈ Cat → (1st𝐼)(𝐶 Func 𝐶)(2nd𝐼))
9 f1oi 6631 . . . . . 6 ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)
10 eqid 2801 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 486 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 eqid 2801 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
13 simprl 770 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
14 simprr 772 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
152, 10, 11, 12, 13, 14idfu2nd 17143 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦)))
16 eqidd 2802 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
172, 10, 11, 13idfu1 17146 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑥) = 𝑥)
182, 10, 11, 14idfu1 17146 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑦) = 𝑦)
1917, 18oveq12d 7157 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) = (𝑥(Hom ‘𝐶)𝑦))
2015, 16, 19f1oeq123d 6589 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)))
219, 20mpbiri 261 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2221ralrimivva 3159 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2310, 12, 12isffth2 17182 . . . 4 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦))))
248, 22, 23sylanbrc 586 . . 3 (𝐶 ∈ Cat → (1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼))
25 df-br 5034 . . 3 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
2624, 25sylib 221 . 2 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
275, 26eqeltrd 2893 1 (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wral 3109  cin 3883  cop 4534   class class class wbr 5033   I cid 5427  cres 5525  Rel wrel 5528  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674  Basecbs 16479  Hom chom 16572  Catccat 16931   Func cfunc 17120  idfunccidfu 17121   Full cful 17168   Faith cfth 17169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-map 8395  df-ixp 8449  df-cat 16935  df-cid 16936  df-func 17124  df-idfu 17125  df-full 17170  df-fth 17171
This theorem is referenced by:  rescfth  17203
  Copyright terms: Public domain W3C validator