MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idffth Structured version   Visualization version   GIF version

Theorem idffth 18000
Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
idffth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idffth (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))

Proof of Theorem idffth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17926 . . 3 Rel (𝐶 Func 𝐶)
2 idffth.i . . . 4 𝐼 = (idfunc𝐶)
32idfucl 17945 . . 3 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
4 1st2nd 8080 . . 3 ((Rel (𝐶 Func 𝐶) ∧ 𝐼 ∈ (𝐶 Func 𝐶)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
51, 3, 4sylancr 586 . 2 (𝐶 ∈ Cat → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
65, 3eqeltrrd 2845 . . . . 5 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
7 df-br 5167 . . . . 5 ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
86, 7sylibr 234 . . . 4 (𝐶 ∈ Cat → (1st𝐼)(𝐶 Func 𝐶)(2nd𝐼))
9 f1oi 6900 . . . . . 6 ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)
10 eqid 2740 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 482 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 eqid 2740 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
13 simprl 770 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
14 simprr 772 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
152, 10, 11, 12, 13, 14idfu2nd 17941 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦)))
16 eqidd 2741 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
172, 10, 11, 13idfu1 17944 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑥) = 𝑥)
182, 10, 11, 14idfu1 17944 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑦) = 𝑦)
1917, 18oveq12d 7466 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) = (𝑥(Hom ‘𝐶)𝑦))
2015, 16, 19f1oeq123d 6856 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)))
219, 20mpbiri 258 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2221ralrimivva 3208 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2310, 12, 12isffth2 17983 . . . 4 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦))))
248, 22, 23sylanbrc 582 . . 3 (𝐶 ∈ Cat → (1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼))
25 df-br 5167 . . 3 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
2624, 25sylib 218 . 2 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
275, 26eqeltrd 2844 1 (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cin 3975  cop 4654   class class class wbr 5166   I cid 5592  cres 5702  Rel wrel 5705  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Basecbs 17258  Hom chom 17322  Catccat 17722   Func cfunc 17918  idfunccidfu 17919   Full cful 17969   Faith cfth 17970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-ixp 8956  df-cat 17726  df-cid 17727  df-func 17922  df-idfu 17923  df-full 17971  df-fth 17972
This theorem is referenced by:  rescfth  18004
  Copyright terms: Public domain W3C validator