MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idffth Structured version   Visualization version   GIF version

Theorem idffth 17953
Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
idffth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idffth (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))

Proof of Theorem idffth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17880 . . 3 Rel (𝐶 Func 𝐶)
2 idffth.i . . . 4 𝐼 = (idfunc𝐶)
32idfucl 17899 . . 3 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
4 1st2nd 8043 . . 3 ((Rel (𝐶 Func 𝐶) ∧ 𝐼 ∈ (𝐶 Func 𝐶)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
51, 3, 4sylancr 587 . 2 (𝐶 ∈ Cat → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
65, 3eqeltrrd 2836 . . . . 5 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
7 df-br 5125 . . . . 5 ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
86, 7sylibr 234 . . . 4 (𝐶 ∈ Cat → (1st𝐼)(𝐶 Func 𝐶)(2nd𝐼))
9 f1oi 6861 . . . . . 6 ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)
10 eqid 2736 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 482 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 eqid 2736 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
13 simprl 770 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
14 simprr 772 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
152, 10, 11, 12, 13, 14idfu2nd 17895 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦)))
16 eqidd 2737 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
172, 10, 11, 13idfu1 17898 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑥) = 𝑥)
182, 10, 11, 14idfu1 17898 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐼)‘𝑦) = 𝑦)
1917, 18oveq12d 7428 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) = (𝑥(Hom ‘𝐶)𝑦))
2015, 16, 19f1oeq123d 6817 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐶)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(𝑥(Hom ‘𝐶)𝑦)))
219, 20mpbiri 258 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2221ralrimivva 3188 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
2310, 12, 12isffth2 17936 . . . 4 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ((1st𝐼)(𝐶 Func 𝐶)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦))))
248, 22, 23sylanbrc 583 . . 3 (𝐶 ∈ Cat → (1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼))
25 df-br 5125 . . 3 ((1st𝐼)((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶))(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
2624, 25sylib 218 . 2 (𝐶 ∈ Cat → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
275, 26eqeltrd 2835 1 (𝐶 ∈ Cat → 𝐼 ∈ ((𝐶 Full 𝐶) ∩ (𝐶 Faith 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cin 3930  cop 4612   class class class wbr 5124   I cid 5552  cres 5661  Rel wrel 5664  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  Catccat 17681   Func cfunc 17872  idfunccidfu 17873   Full cful 17922   Faith cfth 17923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-ixp 8917  df-cat 17685  df-cid 17686  df-func 17876  df-idfu 17877  df-full 17924  df-fth 17925
This theorem is referenced by:  rescfth  17957
  Copyright terms: Public domain W3C validator