| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfu1stf1o | Structured version Visualization version GIF version | ||
| Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfu1stf1o.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfu1stf1o.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| idfu1stf1o | ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6808 | . 2 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 2 | idfu1stf1o.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfu1stf1o.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 5 | 2, 3, 4 | idfu1st 17790 | . . 3 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| 6 | 5 | f1oeq1d 6765 | . 2 ⊢ (𝐶 ∈ Cat → ((1st ‘𝐼):𝐵–1-1-onto→𝐵 ↔ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵)) |
| 7 | 1, 6 | mpbiri 258 | 1 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 I cid 5515 ↾ cres 5623 –1-1-onto→wf1o 6487 ‘cfv 6488 1st c1st 7927 Basecbs 17124 Catccat 17574 idfunccidfu 17766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-1st 7929 df-idfu 17770 |
| This theorem is referenced by: idemb 49287 |
| Copyright terms: Public domain | W3C validator |