Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfu1stf1o Structured version   Visualization version   GIF version

Theorem idfu1stf1o 49137
Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
idfu1stf1o.i 𝐼 = (idfunc𝐶)
idfu1stf1o.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
idfu1stf1o (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)

Proof of Theorem idfu1stf1o
StepHypRef Expression
1 f1oi 6801 . 2 ( I ↾ 𝐵):𝐵1-1-onto𝐵
2 idfu1stf1o.i . . . 4 𝐼 = (idfunc𝐶)
3 idfu1stf1o.b . . . 4 𝐵 = (Base‘𝐶)
4 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
52, 3, 4idfu1st 17786 . . 3 (𝐶 ∈ Cat → (1st𝐼) = ( I ↾ 𝐵))
65f1oeq1d 6758 . 2 (𝐶 ∈ Cat → ((1st𝐼):𝐵1-1-onto𝐵 ↔ ( I ↾ 𝐵):𝐵1-1-onto𝐵))
71, 6mpbiri 258 1 (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   I cid 5510  cres 5618  1-1-ontowf1o 6480  cfv 6481  1st c1st 7919  Basecbs 17120  Catccat 17570  idfunccidfu 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-idfu 17766
This theorem is referenced by:  idemb  49197
  Copyright terms: Public domain W3C validator