Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfu1stf1o Structured version   Visualization version   GIF version

Theorem idfu1stf1o 49088
Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
idfu1stf1o.i 𝐼 = (idfunc𝐶)
idfu1stf1o.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
idfu1stf1o (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)

Proof of Theorem idfu1stf1o
StepHypRef Expression
1 f1oi 6838 . 2 ( I ↾ 𝐵):𝐵1-1-onto𝐵
2 idfu1stf1o.i . . . 4 𝐼 = (idfunc𝐶)
3 idfu1stf1o.b . . . 4 𝐵 = (Base‘𝐶)
4 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
52, 3, 4idfu1st 17841 . . 3 (𝐶 ∈ Cat → (1st𝐼) = ( I ↾ 𝐵))
65f1oeq1d 6795 . 2 (𝐶 ∈ Cat → ((1st𝐼):𝐵1-1-onto𝐵 ↔ ( I ↾ 𝐵):𝐵1-1-onto𝐵))
71, 6mpbiri 258 1 (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   I cid 5532  cres 5640  1-1-ontowf1o 6510  cfv 6511  1st c1st 7966  Basecbs 17179  Catccat 17625  idfunccidfu 17817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1st 7968  df-idfu 17821
This theorem is referenced by:  idemb  49148
  Copyright terms: Public domain W3C validator