| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfu1stf1o | Structured version Visualization version GIF version | ||
| Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfu1stf1o.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfu1stf1o.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| idfu1stf1o | ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6845 | . 2 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 2 | idfu1stf1o.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfu1stf1o.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 5 | 2, 3, 4 | idfu1st 17847 | . . 3 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| 6 | 5 | f1oeq1d 6802 | . 2 ⊢ (𝐶 ∈ Cat → ((1st ‘𝐼):𝐵–1-1-onto→𝐵 ↔ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵)) |
| 7 | 1, 6 | mpbiri 258 | 1 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5540 ↾ cres 5648 –1-1-onto→wf1o 6518 ‘cfv 6519 1st c1st 7975 Basecbs 17185 Catccat 17631 idfunccidfu 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-1st 7977 df-idfu 17827 |
| This theorem is referenced by: idemb 49070 |
| Copyright terms: Public domain | W3C validator |