Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfu1stf1o Structured version   Visualization version   GIF version

Theorem idfu1stf1o 49016
Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
idfu1stf1o.i 𝐼 = (idfunc𝐶)
idfu1stf1o.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
idfu1stf1o (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)

Proof of Theorem idfu1stf1o
StepHypRef Expression
1 f1oi 6845 . 2 ( I ↾ 𝐵):𝐵1-1-onto𝐵
2 idfu1stf1o.i . . . 4 𝐼 = (idfunc𝐶)
3 idfu1stf1o.b . . . 4 𝐵 = (Base‘𝐶)
4 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
52, 3, 4idfu1st 17847 . . 3 (𝐶 ∈ Cat → (1st𝐼) = ( I ↾ 𝐵))
65f1oeq1d 6802 . 2 (𝐶 ∈ Cat → ((1st𝐼):𝐵1-1-onto𝐵 ↔ ( I ↾ 𝐵):𝐵1-1-onto𝐵))
71, 6mpbiri 258 1 (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   I cid 5540  cres 5648  1-1-ontowf1o 6518  cfv 6519  1st c1st 7975  Basecbs 17185  Catccat 17631  idfunccidfu 17823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-1st 7977  df-idfu 17827
This theorem is referenced by:  idemb  49070
  Copyright terms: Public domain W3C validator