Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfu1stf1o Structured version   Visualization version   GIF version

Theorem idfu1stf1o 49227
Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
idfu1stf1o.i 𝐼 = (idfunc𝐶)
idfu1stf1o.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
idfu1stf1o (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)

Proof of Theorem idfu1stf1o
StepHypRef Expression
1 f1oi 6808 . 2 ( I ↾ 𝐵):𝐵1-1-onto𝐵
2 idfu1stf1o.i . . . 4 𝐼 = (idfunc𝐶)
3 idfu1stf1o.b . . . 4 𝐵 = (Base‘𝐶)
4 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
52, 3, 4idfu1st 17790 . . 3 (𝐶 ∈ Cat → (1st𝐼) = ( I ↾ 𝐵))
65f1oeq1d 6765 . 2 (𝐶 ∈ Cat → ((1st𝐼):𝐵1-1-onto𝐵 ↔ ( I ↾ 𝐵):𝐵1-1-onto𝐵))
71, 6mpbiri 258 1 (𝐶 ∈ Cat → (1st𝐼):𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   I cid 5515  cres 5623  1-1-ontowf1o 6487  cfv 6488  1st c1st 7927  Basecbs 17124  Catccat 17574  idfunccidfu 17766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-1st 7929  df-idfu 17770
This theorem is referenced by:  idemb  49287
  Copyright terms: Public domain W3C validator