Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfurcl Structured version   Visualization version   GIF version

Theorem idfurcl 49080
Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Assertion
Ref Expression
idfurcl ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)

Proof of Theorem idfurcl
Dummy variables 𝑏 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5419 . . . 4 ⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩ ∈ V
21csbex 5261 . . 3 (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩ ∈ V
3 df-idfu 17801 . . 3 idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
42, 3dmmpti 6644 . 2 dom idfunc = Cat
5 relfunc 17804 . . 3 Rel (𝐷 Func 𝐸)
6 0nelrel0 5691 . . 3 (Rel (𝐷 Func 𝐸) → ¬ ∅ ∈ (𝐷 Func 𝐸))
75, 6ax-mp 5 . 2 ¬ ∅ ∈ (𝐷 Func 𝐸)
84, 7ndmfvrcl 6876 1 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  csb 3859  c0 4292  cop 4591  cmpt 5183   I cid 5525   × cxp 5629  cres 5633  Rel wrel 5636  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  Catccat 17605   Func cfunc 17796  idfunccidfu 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-func 17800  df-idfu 17801
This theorem is referenced by:  idfu1stalem  49082  idfu1sta  49083  idfu1a  49084  idfu2nda  49085  idemb  49141
  Copyright terms: Public domain W3C validator