| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfurcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfurcl | ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5419 | . . . 4 ⊢ 〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉 ∈ V | |
| 2 | 1 | csbex 5261 | . . 3 ⊢ ⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉 ∈ V |
| 3 | df-idfu 17801 | . . 3 ⊢ idfunc = (𝑡 ∈ Cat ↦ ⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉) | |
| 4 | 2, 3 | dmmpti 6644 | . 2 ⊢ dom idfunc = Cat |
| 5 | relfunc 17804 | . . 3 ⊢ Rel (𝐷 Func 𝐸) | |
| 6 | 0nelrel0 5691 | . . 3 ⊢ (Rel (𝐷 Func 𝐸) → ¬ ∅ ∈ (𝐷 Func 𝐸)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ¬ ∅ ∈ (𝐷 Func 𝐸) |
| 8 | 4, 7 | ndmfvrcl 6876 | 1 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⦋csb 3859 ∅c0 4292 〈cop 4591 ↦ cmpt 5183 I cid 5525 × cxp 5629 ↾ cres 5633 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 Catccat 17605 Func cfunc 17796 idfunccidfu 17797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-func 17800 df-idfu 17801 |
| This theorem is referenced by: idfu1stalem 49082 idfu1sta 49083 idfu1a 49084 idfu2nda 49085 idemb 49141 |
| Copyright terms: Public domain | W3C validator |