Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfurcl Structured version   Visualization version   GIF version

Theorem idfurcl 49093
Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Assertion
Ref Expression
idfurcl ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)

Proof of Theorem idfurcl
Dummy variables 𝑏 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5407 . . . 4 ⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩ ∈ V
21csbex 5250 . . 3 (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩ ∈ V
3 df-idfu 17766 . . 3 idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
42, 3dmmpti 6626 . 2 dom idfunc = Cat
5 relfunc 17769 . . 3 Rel (𝐷 Func 𝐸)
6 0nelrel0 5679 . . 3 (Rel (𝐷 Func 𝐸) → ¬ ∅ ∈ (𝐷 Func 𝐸))
75, 6ax-mp 5 . 2 ¬ ∅ ∈ (𝐷 Func 𝐸)
84, 7ndmfvrcl 6856 1 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  csb 3851  c0 4284  cop 4583  cmpt 5173   I cid 5513   × cxp 5617  cres 5621  Rel wrel 5624  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  Catccat 17570   Func cfunc 17761  idfunccidfu 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-func 17765  df-idfu 17766
This theorem is referenced by:  idfu1stalem  49095  idfu1sta  49096  idfu1a  49097  idfu2nda  49098  idemb  49154
  Copyright terms: Public domain W3C validator