Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfurcl Structured version   Visualization version   GIF version

Theorem idfurcl 49006
Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Assertion
Ref Expression
idfurcl ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)

Proof of Theorem idfurcl
Dummy variables 𝑏 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5439 . . . 4 ⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩ ∈ V
21csbex 5281 . . 3 (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩ ∈ V
3 df-idfu 17870 . . 3 idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
42, 3dmmpti 6681 . 2 dom idfunc = Cat
5 relfunc 17873 . . 3 Rel (𝐷 Func 𝐸)
6 0nelrel0 5714 . . 3 (Rel (𝐷 Func 𝐸) → ¬ ∅ ∈ (𝐷 Func 𝐸))
75, 6ax-mp 5 . 2 ¬ ∅ ∈ (𝐷 Func 𝐸)
84, 7ndmfvrcl 6911 1 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  csb 3874  c0 4308  cop 4607  cmpt 5201   I cid 5547   × cxp 5652  cres 5656  Rel wrel 5659  cfv 6530  (class class class)co 7403  Basecbs 17226  Hom chom 17280  Catccat 17674   Func cfunc 17865  idfunccidfu 17866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-func 17869  df-idfu 17870
This theorem is referenced by:  idfu1stalem  49007  idfu1sta  49008  idfu1a  49009  idfu2nda  49010
  Copyright terms: Public domain W3C validator