| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfurcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfurcl | ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5439 | . . . 4 ⊢ 〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉 ∈ V | |
| 2 | 1 | csbex 5281 | . . 3 ⊢ ⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉 ∈ V |
| 3 | df-idfu 17870 | . . 3 ⊢ idfunc = (𝑡 ∈ Cat ↦ ⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉) | |
| 4 | 2, 3 | dmmpti 6681 | . 2 ⊢ dom idfunc = Cat |
| 5 | relfunc 17873 | . . 3 ⊢ Rel (𝐷 Func 𝐸) | |
| 6 | 0nelrel0 5714 | . . 3 ⊢ (Rel (𝐷 Func 𝐸) → ¬ ∅ ∈ (𝐷 Func 𝐸)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ¬ ∅ ∈ (𝐷 Func 𝐸) |
| 8 | 4, 7 | ndmfvrcl 6911 | 1 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⦋csb 3874 ∅c0 4308 〈cop 4607 ↦ cmpt 5201 I cid 5547 × cxp 5652 ↾ cres 5656 Rel wrel 5659 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 Catccat 17674 Func cfunc 17865 idfunccidfu 17866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-func 17869 df-idfu 17870 |
| This theorem is referenced by: idfu1stalem 49007 idfu1sta 49008 idfu1a 49009 idfu2nda 49010 |
| Copyright terms: Public domain | W3C validator |