| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idemb | Structured version Visualization version GIF version | ||
| Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| Ref | Expression |
|---|---|
| idemb | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | 1 | idfth 49189 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) |
| 3 | 1 | eleq1i 2822 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 4 | idfurcl 49129 | . . . . 5 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 5 | 3, 4 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| 6 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | 1, 6 | idfu1stf1o 49130 | . . . 4 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶)) |
| 8 | dff1o4 6771 | . . . . 5 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st ‘𝐼) Fn (Base‘𝐶) ∧ ◡(1st ‘𝐼) Fn (Base‘𝐶))) | |
| 9 | 8 | simprbi 496 | . . . 4 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 10 | 5, 7, 9 | 3syl 18 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 11 | 10 | fnfund 6582 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 12 | 2, 11 | jca 511 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ◡ccnv 5615 Fun wfun 6475 Fn wfn 6476 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 Basecbs 17117 Catccat 17567 Func cfunc 17758 idfunccidfu 17759 Faith cfth 17809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-cat 17571 df-cid 17572 df-homf 17573 df-func 17762 df-idfu 17763 df-fth 17811 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |