Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idemb Structured version   Visualization version   GIF version

Theorem idemb 49148
Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idemb (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))

Proof of Theorem idemb
StepHypRef Expression
1 idfth.i . . 3 𝐼 = (idfunc𝐶)
21idfth 49147 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
31eleq1i 2819 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc𝐶) ∈ (𝐷 Func 𝐸))
4 idfurcl 49087 . . . . 5 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
53, 4sylbi 217 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
6 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
71, 6idfu1stf1o 49088 . . . 4 (𝐶 ∈ Cat → (1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶))
8 dff1o4 6808 . . . . 5 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st𝐼) Fn (Base‘𝐶) ∧ (1st𝐼) Fn (Base‘𝐶)))
98simprbi 496 . . . 4 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → (1st𝐼) Fn (Base‘𝐶))
105, 7, 93syl 18 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼) Fn (Base‘𝐶))
1110fnfund 6619 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → Fun (1st𝐼))
122, 11jca 511 1 (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ccnv 5637  Fun wfun 6505   Fn wfn 6506  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1st c1st 7966  Basecbs 17179  Catccat 17625   Func cfunc 17816  idfunccidfu 17817   Faith cfth 17867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-homf 17631  df-func 17820  df-idfu 17821  df-fth 17869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator