| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idemb | Structured version Visualization version GIF version | ||
| Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| Ref | Expression |
|---|---|
| idemb | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | 1 | idfth 49147 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) |
| 3 | 1 | eleq1i 2819 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 4 | idfurcl 49087 | . . . . 5 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 5 | 3, 4 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| 6 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | 1, 6 | idfu1stf1o 49088 | . . . 4 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶)) |
| 8 | dff1o4 6808 | . . . . 5 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st ‘𝐼) Fn (Base‘𝐶) ∧ ◡(1st ‘𝐼) Fn (Base‘𝐶))) | |
| 9 | 8 | simprbi 496 | . . . 4 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 10 | 5, 7, 9 | 3syl 18 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 11 | 10 | fnfund 6619 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 12 | 2, 11 | jca 511 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ◡ccnv 5637 Fun wfun 6505 Fn wfn 6506 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 Basecbs 17179 Catccat 17625 Func cfunc 17816 idfunccidfu 17817 Faith cfth 17867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-cat 17629 df-cid 17630 df-homf 17631 df-func 17820 df-idfu 17821 df-fth 17869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |