| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idemb | Structured version Visualization version GIF version | ||
| Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| Ref | Expression |
|---|---|
| idemb | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | 1 | idfth 49144 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) |
| 3 | 1 | eleq1i 2819 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 4 | idfurcl 49084 | . . . . 5 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 5 | 3, 4 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| 6 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | 1, 6 | idfu1stf1o 49085 | . . . 4 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶)) |
| 8 | dff1o4 6776 | . . . . 5 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st ‘𝐼) Fn (Base‘𝐶) ∧ ◡(1st ‘𝐼) Fn (Base‘𝐶))) | |
| 9 | 8 | simprbi 496 | . . . 4 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 10 | 5, 7, 9 | 3syl 18 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 11 | 10 | fnfund 6587 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 12 | 2, 11 | jca 511 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ◡ccnv 5622 Fun wfun 6480 Fn wfn 6481 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 Basecbs 17138 Catccat 17588 Func cfunc 17779 idfunccidfu 17780 Faith cfth 17830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-cat 17592 df-cid 17593 df-homf 17594 df-func 17783 df-idfu 17784 df-fth 17832 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |