Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idemb Structured version   Visualization version   GIF version

Theorem idemb 49070
Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idemb (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))

Proof of Theorem idemb
StepHypRef Expression
1 idfth.i . . 3 𝐼 = (idfunc𝐶)
21idfth 49069 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
31eleq1i 2820 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc𝐶) ∈ (𝐷 Func 𝐸))
4 idfurcl 49015 . . . . 5 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
53, 4sylbi 217 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
6 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
71, 6idfu1stf1o 49016 . . . 4 (𝐶 ∈ Cat → (1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶))
8 dff1o4 6815 . . . . 5 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st𝐼) Fn (Base‘𝐶) ∧ (1st𝐼) Fn (Base‘𝐶)))
98simprbi 496 . . . 4 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → (1st𝐼) Fn (Base‘𝐶))
105, 7, 93syl 18 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼) Fn (Base‘𝐶))
1110fnfund 6627 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → Fun (1st𝐼))
122, 11jca 511 1 (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ccnv 5645  Fun wfun 6513   Fn wfn 6514  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  1st c1st 7975  Basecbs 17185  Catccat 17631   Func cfunc 17822  idfunccidfu 17823   Faith cfth 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-homf 17637  df-func 17826  df-idfu 17827  df-fth 17875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator