| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idemb | Structured version Visualization version GIF version | ||
| Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfth.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| Ref | Expression |
|---|---|
| idemb | ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfth.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | 1 | idfth 49283 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) |
| 3 | 1 | eleq1i 2824 | . . . . 5 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 4 | idfurcl 49223 | . . . . 5 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 5 | 3, 4 | sylbi 217 | . . . 4 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) |
| 6 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 7 | 1, 6 | idfu1stf1o 49224 | . . . 4 ⊢ (𝐶 ∈ Cat → (1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶)) |
| 8 | dff1o4 6776 | . . . . 5 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st ‘𝐼) Fn (Base‘𝐶) ∧ ◡(1st ‘𝐼) Fn (Base‘𝐶))) | |
| 9 | 8 | simprbi 496 | . . . 4 ⊢ ((1st ‘𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 10 | 5, 7, 9 | 3syl 18 | . . 3 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ◡(1st ‘𝐼) Fn (Base‘𝐶)) |
| 11 | 10 | fnfund 6587 | . 2 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → Fun ◡(1st ‘𝐼)) |
| 12 | 2, 11 | jca 511 | 1 ⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun ◡(1st ‘𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ◡ccnv 5618 Fun wfun 6480 Fn wfn 6481 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 Basecbs 17122 Catccat 17572 Func cfunc 17763 idfunccidfu 17764 Faith cfth 17814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 df-cat 17576 df-cid 17577 df-homf 17578 df-func 17767 df-idfu 17768 df-fth 17816 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |