Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idemb Structured version   Visualization version   GIF version

Theorem idemb 49284
Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idemb (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))

Proof of Theorem idemb
StepHypRef Expression
1 idfth.i . . 3 𝐼 = (idfunc𝐶)
21idfth 49283 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
31eleq1i 2824 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc𝐶) ∈ (𝐷 Func 𝐸))
4 idfurcl 49223 . . . . 5 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
53, 4sylbi 217 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
6 eqid 2733 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
71, 6idfu1stf1o 49224 . . . 4 (𝐶 ∈ Cat → (1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶))
8 dff1o4 6776 . . . . 5 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st𝐼) Fn (Base‘𝐶) ∧ (1st𝐼) Fn (Base‘𝐶)))
98simprbi 496 . . . 4 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → (1st𝐼) Fn (Base‘𝐶))
105, 7, 93syl 18 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼) Fn (Base‘𝐶))
1110fnfund 6587 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → Fun (1st𝐼))
122, 11jca 511 1 (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ccnv 5618  Fun wfun 6480   Fn wfn 6481  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  1st c1st 7925  Basecbs 17122  Catccat 17572   Func cfunc 17763  idfunccidfu 17764   Faith cfth 17814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17576  df-cid 17577  df-homf 17578  df-func 17767  df-idfu 17768  df-fth 17816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator