Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idemb Structured version   Visualization version   GIF version

Theorem idemb 49145
Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idemb (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))

Proof of Theorem idemb
StepHypRef Expression
1 idfth.i . . 3 𝐼 = (idfunc𝐶)
21idfth 49144 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
31eleq1i 2819 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc𝐶) ∈ (𝐷 Func 𝐸))
4 idfurcl 49084 . . . . 5 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
53, 4sylbi 217 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
6 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
71, 6idfu1stf1o 49085 . . . 4 (𝐶 ∈ Cat → (1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶))
8 dff1o4 6776 . . . . 5 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st𝐼) Fn (Base‘𝐶) ∧ (1st𝐼) Fn (Base‘𝐶)))
98simprbi 496 . . . 4 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → (1st𝐼) Fn (Base‘𝐶))
105, 7, 93syl 18 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼) Fn (Base‘𝐶))
1110fnfund 6587 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → Fun (1st𝐼))
122, 11jca 511 1 (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ccnv 5622  Fun wfun 6480   Fn wfn 6481  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  1st c1st 7929  Basecbs 17138  Catccat 17588   Func cfunc 17779  idfunccidfu 17780   Faith cfth 17830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17592  df-cid 17593  df-homf 17594  df-func 17783  df-idfu 17784  df-fth 17832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator