Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idemb Structured version   Visualization version   GIF version

Theorem idemb 49190
Description: The inclusion functor is an embedding. Remark 4.4(1) in [Adamek] p. 49. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idemb (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))

Proof of Theorem idemb
StepHypRef Expression
1 idfth.i . . 3 𝐼 = (idfunc𝐶)
21idfth 49189 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
31eleq1i 2822 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) ↔ (idfunc𝐶) ∈ (𝐷 Func 𝐸))
4 idfurcl 49129 . . . . 5 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
53, 4sylbi 217 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
6 eqid 2731 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
71, 6idfu1stf1o 49130 . . . 4 (𝐶 ∈ Cat → (1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶))
8 dff1o4 6771 . . . . 5 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) ↔ ((1st𝐼) Fn (Base‘𝐶) ∧ (1st𝐼) Fn (Base‘𝐶)))
98simprbi 496 . . . 4 ((1st𝐼):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → (1st𝐼) Fn (Base‘𝐶))
105, 7, 93syl 18 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼) Fn (Base‘𝐶))
1110fnfund 6582 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → Fun (1st𝐼))
122, 11jca 511 1 (𝐼 ∈ (𝐷 Func 𝐸) → (𝐼 ∈ (𝐷 Faith 𝐸) ∧ Fun (1st𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ccnv 5615  Fun wfun 6475   Fn wfn 6476  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  Basecbs 17117  Catccat 17567   Func cfunc 17758  idfunccidfu 17759   Faith cfth 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-homf 17573  df-func 17762  df-idfu 17763  df-fth 17811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator